Mapping daily global solar irradiation over Spain: A comparative study of selected approaches

Abstract Three methods to estimate the daily global solar irradiation are compared: the Bristow–Campbell (BC), Artificial Neural Network (ANN) and Kernel Ridge Regression (KRR). BC is an empirical approach based on air maximum and minimum temperature. ANN and KRR are non-linear approaches that use temperature and precipitation data (which have been selected as the best combination of input data from a gamma test). The experimental dataset includes 4 years (2005–2008) of daily irradiation collected at 40 stations and temperature and precipitation data collected at 400 stations over Spain. Results show that the ANN method produces the best global solar irradiation estimates, with a mean absolute error 2.33 MJ m −2  day −1 . Daily maps of solar irradiation over Spain at 1-km spatial resolution are produced by applying the ANN method to temperature and precipitation maps generated from ordinary kriging.

[1]  David Pozo-Vázquez,et al.  A comparative study of ordinary and residual kriging techniques for mapping global solar radiation over southern Spain , 2009 .

[2]  Ethem Alpaydin,et al.  Introduction to Machine Learning (Adaptive Computation and Machine Learning) , 2004 .

[3]  Gavin C. Cawley,et al.  Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers , 2003, Pattern Recognit..

[4]  Fernando Pérez-Cabello,et al.  Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images , 2008 .

[5]  C. Ertekin,et al.  Evaluation of global solar radiation models for Konya, Turkey , 2006 .

[6]  V. Badescu Modeling Solar Radiation at the Earth’s Surface , 2008 .

[7]  J. Salas,et al.  A COMPARATIVE ANALYSIS OF TECHNIQUES FOR SPATIAL INTERPOLATION OF PRECIPITATION , 1985 .

[8]  Timothy C. Coburn,et al.  Geostatistics for Natural Resources Evaluation , 2000, Technometrics.

[9]  Piermaria Corona,et al.  Use of remotely sensed and ancillary data for estimating forest gross primary productivity in Italy , 2006 .

[10]  Adel Mellit,et al.  A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach , 2005 .

[11]  James P. Hughes,et al.  Data requirements for kriging: Estimation and network design , 1981 .

[12]  Lakhmi C. Jain,et al.  Recent advances in artificial neural networks: design and applications , 2000 .

[13]  M. Iqbal An introduction to solar radiation , 1983 .

[14]  José M. Paruelo,et al.  Identification of current ecosystem functional types in the Iberian Peninsula , 2006 .

[15]  D. Goodin,et al.  Estimating Solar Irradiance for Crop Modeling Using Daily Air Temperature Data , 1999 .

[16]  Nan Zhongren,et al.  Methods for modelling of temporal and spatial distribution of air temperature at landscape scale in the southern Qilian mountains, China , 2005 .

[17]  Gabriel López,et al.  Selection of input parameters to model direct solar irradiance by using artificial neural networks , 2004 .

[18]  S. Rehman,et al.  Artificial neural network estimation of global solar radiation using air temperature and relative humidity , 2008 .

[19]  S. M. Robaa,et al.  Validation of the existing models for estimating global solar radiation over Egypt , 2009 .

[20]  Piermaria Corona,et al.  Combining remote sensing and ancillary data to monitor the gross productivity of water-limited forest ecosystems , 2009 .

[21]  Dawei Han,et al.  Model data selection using gamma test for daily solar radiation estimation , 2008 .

[22]  F. S. Tymvios,et al.  Comparative study of Ångström's and artificial neural networks' methodologies in estimating global solar radiation , 2005 .

[23]  A. Angstrom Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation , 2007 .

[24]  Larry C. Purcell,et al.  Evaluation of Solar Radiation Prediction Models in North America , 2004 .

[25]  G. Campbell,et al.  On the relationship between incoming solar radiation and daily maximum and minimum temperature , 1984 .

[26]  C. Woodcock,et al.  The use of variograms in remote sensing. I - Scene models and simulated images. II - Real digital images , 1988 .

[27]  F. Veroustraete,et al.  Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data , 2002 .

[28]  C. Hays,et al.  Incorporating bias error in calculating solar irradiance: Implications for crop yield simulations , 2001 .

[29]  A. Angstroem Solar and terrestrial radiation , 1924 .

[30]  K. Bakirci Correlations for estimation of daily global solar radiation with hours of bright sunshine in Turkey , 2009 .

[31]  N. Stuart,et al.  A comparison among strategies for interpolating maximum and minimum daily air temperatures. Part II: The interaction between number of guiding variables and the type of interpolation method , 2001 .

[32]  H. Troy Nagle,et al.  Performance of the Levenberg–Marquardt neural network training method in electronic nose applications , 2005 .

[33]  R. Reese Geostatistics for Environmental Scientists , 2001 .

[34]  F. Javier García-Haro,et al.  Geostatistics for Mapping Leaf Area Index over a Cropland Landscape: Efficiency Sampling Assessment , 2010, Remote. Sens..

[35]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[36]  M. Paulescu Solar Irradiation via Air Temperature Data , 2008 .

[37]  P. Smithson,et al.  Fundamentals of the Physical Environment , 2002 .

[38]  Kaj Madsen,et al.  Methods for Non-Linear Least Squares Problems , 1999 .

[39]  Xurong Mei,et al.  Calibration of the Ångström–Prescott coefficients (a, b) under different time scales and their impacts in estimating global solar radiation in the Yellow River basin , 2009 .

[40]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[41]  Marta Benito,et al.  Estimation of monthly Angström–Prescott equation coefficients from measured daily data in Toledo, Spain , 2005 .

[42]  José David Martín-Guerrero,et al.  Neural networks for analysing the relevance of input variables in the prediction of tropospheric ozone concentration , 2006 .

[43]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[44]  Javier Almorox,et al.  Global solar radiation estimation using sunshine duration in Spain , 2004 .

[45]  Wouter Buytaert,et al.  Human impact on the hydrology of the Andean páramos , 2006 .

[46]  M. Ninyerola,et al.  Mapping a topographic global solar radiation model implemented in a GIS and refined with ground data , 2008 .

[47]  N. Fodor,et al.  Using analogies from soil science for estimating solar radiation , 2011 .

[48]  F. Anctil,et al.  Comparison of empirical daily surface incoming solar radiation models , 2008 .

[49]  Martine Rutten,et al.  Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula , 2009 .

[50]  Xurong Mei,et al.  Evaluation of temperature-based global solar radiation models in China , 2009 .

[51]  Chih-Jen Lin,et al.  Asymptotic Behaviors of Support Vector Machines with Gaussian Kernel , 2003, Neural Computation.