Analysing the Prospects of Perovskite Solar Cells within the Purview of Recent Scientific Advancements

For any given technology to be successful, its ability to compete with the other existing technologies is the key. Over the last five years, perovskite solar cells have entered the research spectrum with tremendous market prospects. These cells provide easy and low cost processability and are an efficient alternative to the existing solar cell technologies in the market. In this review article, we first go over the innovation and the scientific findings that have been going on in the field of perovskite solar cells (PSCs) and then present a short case study of perovskite solar cells based on their energy payback time. Our review aims to be comprehensive, considering the cost, the efficiency, and the stability of the PSCs. Later, we suggest areas for improvement in the field, and how the future might be shaped.

[1]  A. Djurišić,et al.  Cesium Doped NiOx as an Efficient Hole Extraction Layer for Inverted Planar Perovskite Solar Cells , 2017 .

[2]  Mingdeng Wei,et al.  Highly Efficient Perovskite Solar Cells Based on Zn2 Ti3 O8 Nanoparticles as Electron Transport Material. , 2018, ChemSusChem.

[3]  M. Ko,et al.  Enhancing Stability of Perovskite Solar Cells to Moisture by the Facile Hydrophobic Passivation. , 2015, ACS applied materials & interfaces.

[4]  Jay B. Patel,et al.  Efficient perovskite solar cells by metal ion doping , 2016 .

[5]  Z. Yin,et al.  Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells , 2016, Nature Energy.

[6]  T. Hayat,et al.  Optical-Electrical-Chemical Engineering of PEDOT:PSS by Incorporation of Hydrophobic Nafion for Efficient and Stable Perovskite Solar Cells. , 2018, ACS applied materials & interfaces.

[7]  A. Jen,et al.  Highly Efficient and Stable Perovskite Solar Cells Enabled by All-Crosslinked Charge-Transporting Layers , 2017 .

[8]  M. Nazeeruddin,et al.  Star-shaped hole transporting materials with a triazine unit for efficient perovskite solar cells. , 2014, Chemical communications.

[9]  F. Giordano,et al.  Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells , 2016, Nature Communications.

[10]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[11]  M. Taguchi,et al.  24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer , 2013, IEEE Journal of Photovoltaics.

[12]  Michael D. McGehee,et al.  High-efficiency tandem perovskite solar cells , 2015 .

[13]  J. Noh,et al.  Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors , 2013, Nature Photonics.

[14]  Juan Bisquert,et al.  Slow Dynamic Processes in Lead Halide Perovskite Solar Cells. Characteristic Times and Hysteresis. , 2014, The journal of physical chemistry letters.

[15]  Y. Yoshida,et al.  Theoretical limit of power conversion efficiency for organic and hybrid halide perovskite photovoltaics , 2015, 1504.07729.

[16]  M. Grätzel,et al.  A simple 3,4-ethylenedioxythiophene based hole-transporting material for perovskite solar cells. , 2014, Angewandte Chemie.

[17]  T. Hayat,et al.  Thiophene–Arylamine Hole‐Transporting Materials in Perovskite Solar Cells: Substitution Position Effect , 2017 .

[18]  V. Zardetto,et al.  Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges , 2017 .

[19]  Wai Kin Chan,et al.  Encapsulation of Perovskite Solar Cells for High Humidity Conditions. , 2016, ChemSusChem.

[20]  Moritz H. Futscher,et al.  Efficiency Limit of Perovskite/Si Tandem Solar Cells , 2016 .

[21]  Yani Chen,et al.  Efficient and reproducible CH3NH3PbI(3-x)(SCN)x perovskite based planar solar cells. , 2015, Chemical communications.

[22]  Molecular Tailoring of Phenothiazine-Based Hole-Transporting Materials for High-Performing Perovskite Solar Cells , 2017 .

[23]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[24]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[25]  Lei Meng,et al.  Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells. , 2016, Accounts of chemical research.

[26]  Franco Cacialli,et al.  Inorganic caesium lead iodide perovskite solar cells , 2015 .

[27]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[28]  J. Berry,et al.  Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys , 2016 .

[29]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[30]  Priti Tiwana,et al.  Electron mobility and injection dynamics in mesoporous ZnO, SnO₂, and TiO₂ films used in dye-sensitized solar cells. , 2011, ACS nano.

[31]  Yani Chen,et al.  Triple-cation mixed-halide perovskites: towards efficient, annealing-free and air-stable solar cells enabled by Pb(SCN)2 additive , 2017, Scientific Reports.

[32]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[33]  T. Noda,et al.  Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering , 2017, Advanced materials.

[34]  Yi-bing Cheng,et al.  Spiro-thiophene derivatives as hole-transport materials for perovskite solar cells , 2015 .

[35]  O. Gunawan,et al.  Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage , 2014 .

[36]  Zhike Liu,et al.  Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity , 2016, Nature Communications.

[37]  Xiangling Gu,et al.  Enhanced electronic transport in Fe3+-doped TiO2 for high efficiency perovskite solar cells , 2017 .

[38]  M. B. Upama,et al.  A high performance and low-cost hole transporting layer for efficient and stable perovskite solar cells. , 2017, Physical chemistry chemical physics : PCCP.

[39]  Kai Zhu,et al.  Influence of Electrode Interfaces on the Stability of Perovskite Solar Cells: Reduced Degradation Using MoOx/Al for Hole Collection , 2016 .

[40]  Wei Zhang,et al.  Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells , 2015, Nature Communications.

[41]  Zhiyong Liu,et al.  Solution processed double-decked V2Ox/PEDOT:PSS film serves as the hole transport layer of an inverted planar perovskite solar cell with high performance , 2017 .

[42]  M. Grätzel,et al.  A low-cost spiro[fluorene-9,9′-xanthene]-based hole transport material for highly efficient solid-state dye-sensitized solar cells and perovskite solar cells , 2016 .

[43]  Qi Chen,et al.  Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. , 2016, Nature nanotechnology.

[44]  Aram Amassian,et al.  Stable high efficiency two-dimensional perovskite solar cells via cesium doping , 2017 .

[45]  M. B. Upama,et al.  Adsorbed carbon nanomaterials for surface and interface-engineered stable rubidium multi-cation perovskite solar cells. , 2018, Nanoscale.

[46]  Dong Yang,et al.  Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells , 2017, Advanced science.

[47]  Zhongquan Wan,et al.  Dissolution-recrystallization method for high efficiency perovskite solar cells , 2017 .

[48]  Dongbin Xiong,et al.  Graphene oxide as an additive to improve perovskite film crystallization and morphology for high-efficiency solar cells , 2018, RSC advances.

[49]  Jonathan P. Mailoa,et al.  23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability , 2017, Nature Energy.

[50]  Tao Wang,et al.  Conjugated Small Molecule for Efficient Hole Transport in High‐Performance p‐i‐n Type Perovskite Solar Cells , 2017 .

[51]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[52]  C. Zhong,et al.  Spiro-OMeTAD single crystals: Remarkably enhanced charge-carrier transport via mesoscale ordering , 2016, Science Advances.

[53]  A. D. Vos,et al.  Detailed balance limit of the efficiency of tandem solar cells , 1980 .

[54]  M. Grätzel,et al.  Title: Long-Range Balanced Electron and Hole Transport Lengths in Organic-Inorganic CH3NH3PbI3 , 2017 .

[55]  A. Jen,et al.  Quantifying Efficiency Loss of Perovskite Solar Cells by a Modified Detailed Balance Model , 2018, 1801.02941.

[56]  Ursula Rothlisberger,et al.  Entropic stabilization of mixed A-cation ABX3 metal halide perovskites for high performance perovskite solar cells , 2016 .

[57]  Seh-Won Ahn,et al.  Investigation of Thermally Induced Degradation in CH3NH3PbI3 Perovskite Solar Cells using In-situ Synchrotron Radiation Analysis , 2017, Scientific Reports.

[58]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[59]  Qing Zhao,et al.  Enhanced long-term stability of perovskite solar cells using a double-layer hole transport material , 2017 .

[60]  Reinhard Schwödiauer,et al.  Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air. , 2015, Nature Materials.

[61]  Anders Hagfeldt,et al.  Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance , 2016, Science.

[62]  Zhao Zhiguo,et al.  Recent progress in stability of perovskite solar cells , 2017 .

[63]  K. Jiang,et al.  Cross-stacked superaligned carbon nanotube electrodes for efficient hole conductor-free perovskite solar cells , 2016 .

[64]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[65]  Joshua M. Pearce,et al.  A Review of Solar Photovoltaic Levelized Cost of Electricity , 2011 .

[66]  Fluorine Functionalized Graphene Nano Platelets for Highly Stable Inverted Perovskite Solar Cells. , 2017, Nano letters.

[67]  Maximilian T. Hörantner,et al.  Well-Defined Nanostructured, Single-Crystalline TiO2 Electron Transport Layer for Efficient Planar Perovskite Solar Cells. , 2016, ACS nano.

[68]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[69]  Young Chan Kim,et al.  o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. , 2014, Journal of the American Chemical Society.

[70]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[71]  Tongle Bu,et al.  A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells , 2017 .

[72]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[73]  Kai Zhu,et al.  Low-bandgap mixed tin–lead iodide perovskite absorbers with long carrier lifetimes for all-perovskite tandem solar cells , 2017, Nature Energy.

[74]  Donghoon Choi,et al.  Enhanced Efficiency and Long-Term Stability of Perovskite Solar Cells by Synergistic Effect of Nonhygroscopic Doping in Conjugated Polymer-Based Hole-Transporting Layer. , 2017, ACS applied materials & interfaces.

[75]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[76]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[77]  M. Heben,et al.  Environmental Impacts from Photovoltaic Solar Cells Made with Single Walled Carbon Nanotubes. , 2017, Environmental science & technology.

[78]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[79]  Jin Young Kim,et al.  Highly Efficient and Uniform 1 cm2 Perovskite Solar Cells with an Electrochemically Deposited NiOx Hole-Extraction Layer. , 2017, ChemSusChem.

[80]  Lei Zhu,et al.  Surface engineering of perovskite films for efficient solar cells , 2017, Scientific Reports.

[81]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[82]  M. Johnston,et al.  Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells , 2014 .

[83]  Shenghao Wang,et al.  High performance perovskite solar cells by hybrid chemical vapor deposition , 2014 .

[84]  Sung Cheol Yoon,et al.  Benefits of very thin PCBM and LiF layers for solution-processed p–i–n perovskite solar cells , 2014 .

[85]  Nakita K. Noel,et al.  Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic-inorganic lead halide perovskites. , 2014, ACS nano.

[86]  Jin Young Kim,et al.  Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells , 2015, Nature Communications.

[87]  H. Rensmo,et al.  Chemical and Electronic Structure Characterization of Lead Halide Perovskites and Stability Behavior under Different Exposures—A Photoelectron Spectroscopy Investigation , 2015 .

[88]  V. Fthenakis,et al.  Life Cycle Assessment of Organic Photovoltaics , 2012 .

[89]  T. Matsushima,et al.  Grain Boundary Engineering of Halide Perovskite CH3NH3PbI3 Solar Cells with Photochemically Active Additives , 2018 .

[90]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[91]  R. Schropp,et al.  Supporting Information High-Efficiency Humidity-Stable Planar Perovskite Solar Cells Based On Atomic Layer Architecture , 2016 .

[92]  Bo Qu,et al.  Improved light absorption and charge transport for perovskite solar cells with rough interfaces by sequential deposition. , 2014, Nanoscale.

[93]  Zhiqiang Feng,et al.  Accelerated Lifetime Testing of Organic-Inorganic Perovskite Solar Cells Encapsulated by Polyisobutylene. , 2017, ACS applied materials & interfaces.

[94]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[95]  Juntao Li,et al.  Efficient Indium‐Doped TiOx Electron Transport Layers for High‐Performance Perovskite Solar Cells and Perovskite‐Silicon Tandems , 2017 .

[96]  A. Jen,et al.  Effects of Self-Assembled Monolayer Modification of Nickel Oxide Nanoparticles Layer on the Performance and Application of Inverted Perovskite Solar Cells. , 2017, ChemSusChem.

[97]  Henry J. Snaith,et al.  Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification , 2016 .

[98]  Chien-Hung Chiang,et al.  Bulk heterojunction perovskite–PCBM solar cells with high fill factor , 2016, Nature Photonics.

[99]  Hele Savin,et al.  Black silicon solar cells with interdigitated back-contacts achieve 22.1% efficiency. , 2015, Nature nanotechnology.

[100]  J. Jang,et al.  Enhanced efficiency and air-stability of NiOX-based perovskite solar cells via PCBM electron transport layer modification with Triton X-100. , 2017, Nanoscale.

[101]  Sandeep Kumar Pathak,et al.  Performance and Stability Enhancement of Dye‐Sensitized and Perovskite Solar Cells by Al Doping of TiO2 , 2014 .

[102]  Braden D. Siempelkamp,et al.  Origin of the Thermal Instability in CH 3 NH 3 PbI 3 Thin Films Deposited on ZnO , 2015 .

[103]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[104]  T. Bein,et al.  Design rules for the preparation of low-cost hole transporting materials for perovskite solar cells with moisture barrier properties , 2017 .

[105]  J. Shapter,et al.  Single-Walled Carbon Nanotubes Enhance the Efficiency and Stability of Mesoscopic Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[106]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[107]  P. Fang,et al.  Passivated Perovskite Crystallization via g‐C3N4 for High‐Performance Solar Cells , 2018 .

[108]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[109]  T. Bein,et al.  Correction: A low cost azomethine-based hole transporting material for perovskite photovoltaics , 2015 .

[110]  B. Rech,et al.  Perovskite Solar Cells with Large-Area CVD-Graphene for Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[111]  A. Jen,et al.  Defect Passivation of Organic–Inorganic Hybrid Perovskites by Diammonium Iodide toward High-Performance Photovoltaic Devices , 2016 .

[112]  Peng Gao,et al.  Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. , 2014, ACS nano.

[113]  Aldo Di Carlo,et al.  Encapsulation for long-term stability enhancement of perovskite solar cells , 2016 .

[114]  Luzhou Chen,et al.  The efficiency limit of CH3NH3PbI3 perovskite solar cells , 2015 .

[115]  F. Jaramillo,et al.  Enhancement of Morphological and Optoelectronic Properties of Perovskite Films by CH3NH3Cl Treatment for Efficient Solar Minimodules , 2018 .

[116]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[117]  Jae-Wook Kang,et al.  Degradation mechanism of planar-perovskite solar cells: correlating evolution of iodine distribution and photocurrent hysteresis , 2017 .

[118]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[119]  E. Kaxiras,et al.  Establishing the limits of efficiency of perovskite solar cells from first principles modeling , 2016, Scientific Reports.

[120]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[121]  Aron Walsh,et al.  Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells , 2014, Nano letters.

[122]  Steffen Meyer,et al.  Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity , 2015 .

[123]  Dong Hoe Kim,et al.  Facile fabrication of large-grain CH3NH3PbI3−xBrx films for high-efficiency solar cells via CH3NH3Br-selective Ostwald ripening , 2016, Nature Communications.

[124]  Qingfeng Dong,et al.  Enhancing stability and efficiency of perovskite solar cells with crosslinkable silane-functionalized and doped fullerene , 2016, Nature Communications.

[125]  Kang Wang,et al.  CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[126]  H. Jung,et al.  An ultra-thin, un-doped NiO hole transporting layer of highly efficient (16.4%) organic-inorganic hybrid perovskite solar cells. , 2016, Nanoscale.

[127]  Jin Young Kim,et al.  Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells , 2014 .

[128]  Qingmin Ji,et al.  Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells , 2017 .

[129]  Kai Zhu,et al.  Origin of J-V Hysteresis in Perovskite Solar Cells. , 2016, The journal of physical chemistry letters.

[130]  D. Scanlon,et al.  (CH3NH3)2Pb(SCN)2I2: a more stable structural motif for hybrid halide photovoltaics? , 2015, The journal of physical chemistry letters.

[131]  N. Park,et al.  High efficiency solar cells combining a perovskite and a silicon heterojunction solar cells via an optical splitting system , 2015 .

[132]  N. Park,et al.  Efficient and Reproducible CH3NH3PbI3 Perovskite Layer Prepared Using a Binary Solvent Containing a Cyclic Urea Additive. , 2018, ACS applied materials & interfaces.

[133]  Wenhui Zhou,et al.  p-type Li, Cu-codoped NiOx hole-transporting layer for efficient planar perovskite solar cells. , 2016, Optics express.

[134]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[135]  Anders Hagfeldt,et al.  Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5ee03874j Click here for additional data file. , 2016, Energy & environmental science.

[136]  C. Soci,et al.  Grain Size Modulation and Interfacial Engineering of CH3 NH3 PbBr3 Emitter Films through Incorporation of Tetraethylammonium Bromide. , 2018, Chemphyschem : a European journal of chemical physics and physical chemistry.

[137]  Han Yang,et al.  A Solution-Processed Transparent NiO Hole-Extraction Layer for High-Performance Inverted Perovskite Solar Cells. , 2018, Chemistry.

[138]  Timothy L. Kelly,et al.  Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO , 2015 .

[139]  K. Catchpole,et al.  Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis , 2017 .

[140]  Guangda Niu,et al.  Review of recent progress in chemical stability of perovskite solar cells , 2015 .

[141]  S. Manzhos,et al.  Low‐Cost Alternative High‐Performance Hole‐Transport Material for Perovskite Solar Cells and Its Comparative Study with Conventional SPIRO‐OMeTAD , 2017 .

[142]  N. Zheng,et al.  Efficient, Hysteresis‐Free, and Stable Perovskite Solar Cells with ZnO as Electron‐Transport Layer: Effect of Surface Passivation , 2018, Advanced materials.

[143]  Lei Lei,et al.  Achieving high-performance planar perovskite solar cells with co-sputtered Co-doping NiOx hole transport layers by efficient extraction and enhanced mobility , 2016 .

[144]  T. Shi,et al.  Enhanced photovoltaic performance and stability of carbon counter electrode based perovskite solar cells encapsulated by PDMS , 2016 .

[145]  Cesare Soci,et al.  Perovskite Solar Cells , 2016 .

[146]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[147]  Shinuk Cho,et al.  Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer , 2018, Scientific Reports.

[148]  M. Volder,et al.  Low-cost electrodes for stable perovskite solar cells , 2017 .

[149]  Defne Apul,et al.  Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis , 2015 .

[150]  Juan Bisquert,et al.  Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. , 2013, Nano letters.

[151]  N. Yuan,et al.  Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer , 2017 .

[152]  Jing Feng,et al.  Surface Passivation of Perovskite Film by Small Molecule Infiltration for Improved Efficiency of Perovskite Solar Cells , 2016, IEEE Photonics Journal.

[153]  Yang Yang,et al.  Low-bandgap conjugated polymers enabling solution-processable tandem solar cells , 2017 .

[154]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[155]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[156]  Rongrong Cheacharoen,et al.  Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling , 2018 .

[157]  M. B. Upama,et al.  Cesium compounds as interface modifiers for stable and efficient perovskite solar cells , 2018 .

[158]  Tomas Leijtens,et al.  Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. , 2014, Nano letters.

[159]  Mohammad Khaja Nazeeruddin,et al.  Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. , 2013, Journal of the American Chemical Society.

[160]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[161]  Yun‐Hi Kim,et al.  Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI‐Based Polymer as the Electron Transport Layer , 2018 .

[162]  Nakita K. Noel,et al.  Investigating the Role of 4‐Tert Butylpyridine in Perovskite Solar Cells , 2017 .

[163]  Shahzad Ahmad,et al.  Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material , 2017 .

[164]  Y. Qi,et al.  Surface and Interface Aspects of Organometal Halide Perovskite Materials and Solar Cells. , 2016, The journal of physical chemistry letters.

[165]  Xing’ao Li,et al.  Boosting efficiency of hole conductor-free perovskite solar cells by incorporating p-type NiO nanoparticles into carbon electrodes , 2018 .

[166]  Jingjing Zhao,et al.  Stabilizing the α-Phase of CsPbI3 Perovskite by Sulfobetaine Zwitterions in One-Step Spin-Coating Films , 2017 .

[167]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[168]  H. Boyen,et al.  Structure-Property Relations of Methylamine Vapor Treated Hybrid Perovskite CH3NH3PbI3 Films and Solar Cells. , 2017, ACS applied materials & interfaces.

[169]  Nripan Mathews,et al.  Formamidinium-Containing Metal-Halide: An Alternative Material for Near-IR Absorption Perovskite Solar Cells , 2014 .

[170]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[171]  Xiang Deng,et al.  Simple and low-cost thiophene and benzene-conjugated triaryamines as hole-transporting materials for perovskite solar cells , 2017 .

[172]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[173]  Tulja Bhavani Korukonda,et al.  Recent advancement in metal cathode and hole-conductor-free perovskite solar cells for low-cost and high stability: A route towards commercialization , 2018 .

[174]  Yang Yang,et al.  Efficient planar perovskite solar cells using halide Sr-substituted Pb perovskite , 2017 .

[175]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[176]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[177]  Yanhong Luo,et al.  DMF as an Additive in a Two-Step Spin-Coating Method for 20% Conversion Efficiency in Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[178]  Tzu‐Chien Wei,et al.  Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells , 2017, Scientific Reports.

[179]  Si-Min Dai,et al.  Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature , 2017 .

[180]  Wei Zhang,et al.  Improving the Long-Term Stability of Perovskite Solar Cells with a Porous Al2O3 Buffer Layer. , 2015, The journal of physical chemistry letters.

[181]  M. Grätzel,et al.  Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. , 2016, ChemSusChem.

[182]  Nripan Mathews,et al.  Advancements in perovskite solar cells: photophysics behind the photovoltaics , 2014 .

[183]  Gang-Young Lee,et al.  Gradated Mixed Hole Transport Layer in a Perovskite Solar Cell: Improving Moisture Stability and Efficiency. , 2017, ACS applied materials & interfaces.

[184]  Henry J. Snaith,et al.  Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance , 2013, Nature.

[185]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[186]  M. Grätzel,et al.  Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[187]  K. Cao,et al.  Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture , 2017 .

[188]  M. Nazeeruddin,et al.  Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface , 2017 .

[189]  Xudong Yang,et al.  Cost‐Performance Analysis of Perovskite Solar Modules , 2016, Advanced science.

[190]  Namchul Cho,et al.  High‐Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution‐Processed Copper‐Doped Nickel Oxide Hole‐Transporting Layer , 2015, Advanced materials.

[191]  Zhanhua Wei,et al.  A multifunctional C + epoxy/Ag-paint cathode enables efficient and stable operation of perovskite solar cells in watery environments , 2015 .

[192]  H. Snaith,et al.  Cation exchange for thin film lead iodide perovskite interconversion , 2016 .

[193]  Nam-Gyu Park,et al.  6.5% efficient perovskite quantum-dot-sensitized solar cell. , 2011, Nanoscale.

[194]  Kwanghee Lee,et al.  Achieving Large‐Area Planar Perovskite Solar Cells by Introducing an Interfacial Compatibilizer , 2017, Advanced materials.

[195]  H. Queisser,et al.  Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells , 1961 .

[196]  Wenguang Li,et al.  Achieving high-performance planar perovskite solar cell with Nb-doped TiO2 compact layer by enhanced electron injection and efficient charge extraction , 2016 .

[197]  Sandeep Kumar Pathak,et al.  ZrO2/TiO2 Electron Collection Layer for Efficient Meso-Superstructured Hybrid Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[198]  Yasemin Saygili,et al.  Boosting the Efficiency of Perovskite Solar Cells with CsBr‐Modified Mesoporous TiO2 Beads as Electron‐Selective Contact , 2018 .

[199]  Licheng Sun,et al.  High-Performance Regular Perovskite Solar Cells Employing Low-Cost Poly(ethylenedioxythiophene) as a Hole-Transporting Material , 2017, Scientific Reports.

[200]  K. Ho,et al.  Efficiency Enhancement of Hybrid Perovskite Solar Cells with MEH-PPV Hole-Transporting Layers , 2016, Scientific Reports.

[201]  A. Bahtiar,et al.  Pin-Hole Free Perovskite Film for Solar Cells Application Prepared by Controlled Two-Step Spin-Coating Method , 2017 .

[202]  M. Green,et al.  Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells , 2018 .

[203]  Eli Yablonovitch,et al.  Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit , 2012, IEEE Journal of Photovoltaics.

[204]  Jonathan P. Mailoa,et al.  A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction , 2015 .

[205]  Sandeep Kumar Pathak,et al.  Doping of TiO2 for sensitized solar cells. , 2015, Chemical Society reviews.

[206]  David Cahen,et al.  Updated Assessment of Possibilities and Limits for Solar Cells , 2014, Advanced materials.

[207]  Y. Qi,et al.  Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films , 2015 .

[208]  M. B. Upama,et al.  V2O5 -PEDOT: PSS bilayer as hole transport layer for highly efficient and stable perovskite solar cells , 2018 .

[209]  M. Worsley,et al.  Graded bandgap perovskite solar cells. , 2017, Nature materials.

[210]  Eric T. Hoke,et al.  Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics† †Electronic supplementary information (ESI) available: Experimental details, PL, PDS spectra and XRD patterns. See DOI: 10.1039/c4sc03141e Click here for additional data file. , 2014, Chemical science.

[211]  Jinsong Huang,et al.  Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime? , 2016 .

[212]  Liangcong Jiang,et al.  On the Origin of Hysteresis in Perovskite Solar Cells , 2016 .

[213]  Mohammad Khaja Nazeeruddin,et al.  Inorganic hole conductor-based lead halide perovskite solar cells with 12.4% conversion efficiency , 2014, Nature Communications.

[214]  J. Jang,et al.  Highly efficient perovskite solar cells incorporating NiO nanotubes: increased grain size and enhanced charge extraction , 2017 .

[215]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[216]  Yang Yang,et al.  Carbon Quantum Dots/TiOx Electron Transport Layer Boosts Efficiency of Planar Heterojunction Perovskite Solar Cells to 19. , 2017, Nano letters.

[217]  Jeffrey A. Christians,et al.  An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. , 2014, Journal of the American Chemical Society.