Continuity and convergence in rational triangular Bézier spline based isogeometric analysis

Abstract This paper presents a method for isogeometric analysis using rational Triangular Bezier Splines (rTBS) where optimal convergence rates are achieved. In this method, both the geometry and the physical field are represented by bivariate splines in Bernstein Bezier form over the triangulation of a domain. From a given physical domain bounded by NURBS curves, a parametric domain and its triangulation are constructed. By imposing continuity constraints on Bezier ordinates, we obtain a set of global C r smooth basis functions. Convergence analysis shows that isogeometric analysis with such C r rTBS basis can deliver the optimal rate of convergence provided that the C r geometric map remains unchanged during the refinement process. This condition can be satisfied by constructing a pre-refinement geometric map that is sufficiently smooth. Numerical experiments verify that optimal rates of convergence are achieved for Poisson and linear elasticity problems.

[1]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[2]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[3]  Dongdong Wang,et al.  An improved NURBS-based isogeometric analysis with enhanced treatment of essential boundary conditions , 2010 .

[4]  Ronald Cools,et al.  A survey of numerical cubature over triangles , 1993 .

[5]  Peter Alfeld,et al.  Bivariate spline spaces and minimal determining sets , 2000 .

[6]  Ming-Jun Lai,et al.  Scattered data interpolation and approximation using bivariate C1 piecewise cubic polynomials , 1996, Comput. Aided Geom. Des..

[7]  Tom Lyche,et al.  T-spline simplification and local refinement , 2004, ACM Trans. Graph..

[8]  Hendrik Speleers,et al.  A normalized basis for quintic Powell-Sabin splines , 2010, Comput. Aided Geom. Des..

[9]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[10]  M. Rivara New Mathematical Tools and Techniques for the Refinement and/or Improvement of Unstructured Triangulations , 1996 .

[11]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[12]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[13]  Kang Li,et al.  Isogeometric analysis and shape optimization via boundary integral , 2011, Comput. Aided Des..

[14]  Hendrik Speleers,et al.  A normalized basis for reduced Clough-Tocher splines , 2010, Comput. Aided Geom. Des..

[15]  Xiaoping Qian,et al.  Full analytical sensitivities in NURBS based isogeometric shape optimization , 2010 .

[16]  Xin Li,et al.  Analysis-suitable T-splines: characterization, refineability, and approximation , 2012, ArXiv.

[17]  G. Sangalli,et al.  IsoGeometric analysis using T-splines on two-patch geometries , 2011 .

[18]  Ming-Jun Lai,et al.  The Multivariate Spline Method for Scattered Data Fitting and Numerical Solutions of Partial Differential Equations , 2006 .

[19]  Ming-Jun Lai,et al.  Bivariate splines for fluid flows , 2004 .

[20]  Hendrik Speleers,et al.  Isogeometric analysis with Powell–Sabin splines for advection–diffusion–reaction problems , 2012 .

[21]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[22]  W. Wall,et al.  Isogeometric structural shape optimization , 2008 .

[23]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[24]  Paul Dierckx,et al.  Surface fitting using convex Powell-Sabin splines , 1994 .

[25]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[26]  Danfu Han,et al.  Bivariate Splines of Various Degrees for Numerical Solution of Partial Differential Equations , 2007, SIAM J. Sci. Comput..

[27]  Hong Dong,et al.  Spaces of bivariate spline functions over triangulation , 1991 .

[28]  T. Tezduyar,et al.  Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements , 2003 .

[29]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[30]  Larry L. Schumaker,et al.  Computing bivariate splines in scattered data fitting and the finite-element method , 2008, Numerical Algorithms.

[31]  Michael A. Scott,et al.  T-splines as a design-through-analysis technology , 2011 .

[32]  P. Gould Introduction to Linear Elasticity , 1983 .

[33]  Hendrik Speleers,et al.  From NURBS to NURPS geometries , 2013 .

[34]  Hendrik Speleers,et al.  Numerical solution of partial differential equations with Powell-Sabin splines , 2006 .

[35]  Paul Sablonnière,et al.  Error Bounds for Hermite Interpolation by Quadratic Splines on an α-Triangulation , 1987 .

[36]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[37]  Hendrik Speleers,et al.  Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines , 2015, J. Comput. Appl. Math..

[38]  Xiaoping Qian,et al.  Isogeometric analysis on triangulations , 2014, Comput. Aided Des..

[39]  G. Farin Curves and Surfaces for Cagd: A Practical Guide , 2001 .

[40]  Hendrik Speleers,et al.  Multivariate normalized Powell-Sabin B-splines and quasi-interpolants , 2013, Comput. Aided Geom. Des..

[41]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[42]  Hendrik Speleers,et al.  A locking-free model for Reissner-Mindlin plates: Analysis and isogeometric implementation via NURBS and triangular NURPS , 2015 .

[43]  John A. Evans,et al.  Bézier projection: A unified approach for local projection and quadrature-free refinement and coarsening of NURBS and T-splines with particular application to isogeometric design and analysis , 2014, 1404.7155.

[44]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[45]  Paul Dierckx,et al.  On calculating normalized Powell-Sabin B-splines , 1997, Comput. Aided Geom. Des..

[46]  Tom Lyche,et al.  A B-spline-like basis for the Powell-Sabin 12-split based on simplex splines , 2013, Math. Comput..

[47]  Carla Manni,et al.  Quadratic spline quasi-interpolants on Powell-Sabin partitions , 2007, Adv. Comput. Math..

[48]  Paul Dierckx,et al.  Algorithms for surface fitting using Powell-Sabin splines , 1992 .

[49]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[50]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[51]  Ole Sigmund,et al.  Isogeometric shape optimization of photonic crystals via Coons patches , 2011 .