Selective dissolution of halide perovskites as a step towards recycling solar cells

[1]  M. Gorgoi,et al.  Electronic Structure of TiO2/CH3NH3PbI3 Perovskite Solar Cell Interfaces. , 2014, The journal of physical chemistry letters.

[2]  Q. Wei,et al.  Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide , 2015 .

[3]  Yuanyuan Zhou,et al.  Direct Observation of Ferroelectric Domains in Solution-Processed CH3NH3PbI3 Perovskite Thin Films. , 2014, The journal of physical chemistry letters.

[4]  Joseph A. Miller,et al.  Dipolar Aprotic Solvents in Bimolecular Aromatic Nucleophilic Substitution Reactions1 , 1961 .

[5]  D. Sarma,et al.  Spectroscopic studies on quantum dots of PbI2 , 1992 .

[6]  Omar K. Farha,et al.  Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells?a) , 2014 .

[7]  H. Boyen,et al.  Perovskite‐Based Hybrid Solar Cells Exceeding 10% Efficiency with High Reproducibility Using a Thin Film Sandwich Approach. , 2014 .

[8]  Shuzi Hayase,et al.  Reproducible Fabrication of Efficient Perovskite-based Solar Cells: X-ray Crystallographic Studies on the Formation of CH3NH3PbI3 Layers , 2014 .

[9]  M. Keane,et al.  The removal of cadmium and lead from aqueous solution by ion exchange with NaY zeolite , 1998 .

[10]  Toraj Mohammadi,et al.  Effect of operating parameters on Pb2+ separation from wastewater using electrodialysis* , 2004 .

[11]  W. Kocher,et al.  Lead removal from foundry waste by solvent extraction. , 1995, Journal of the Air & Waste Management Association.

[12]  M. Nazeeruddin,et al.  High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors , 2015 .

[13]  R. C. King,et al.  Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data , 1995 .

[14]  S. Sternberg,et al.  Lead and nickel removal using Microspora and Lemna minor. , 2003, Bioresource technology.

[15]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[16]  A. Parker The effects of solvation on the properties of anions in dipolar aprotic solvents , 1962 .

[17]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[18]  Lifeng Zhang,et al.  Metallurgical recovery of metals from electronic waste: a review. , 2008, Journal of hazardous materials.

[19]  Y. Lei,et al.  Bioinspired fabrication and lead adsorption property of nano-hydroxyapatite/chitosan porous materials , 2015 .

[20]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[21]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[22]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[23]  Lynn M. Savage Perovskite Photovoltaics: Hitting Their Stride , 2014 .

[24]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[25]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[26]  Q. Yao,et al.  Fabrication of Hydroxyapatite Hierarchical Hollow Microspheres and Potential Application in Water Treatment , 2012 .

[27]  C. Hagelüken,et al.  Recycling of gold from electronics: Cost-effective use through ‘Design for Recycling’ , 2010 .

[28]  Kai Zhu,et al.  Controlled Humidity Study on the Formation of Higher Efficiency Formamidinium Lead Triiodide-Based Solar Cells , 2015 .