SLO potassium channels antagonize premature decision making in C. elegans

[1]  Damien M. O’Halloran,et al.  Contribution of the cyclic nucleotide gated channel subunit, CNG-3, to olfactory plasticity in Caenorhabditis elegans , 2017, Scientific Reports.

[2]  P. Sengupta,et al.  Receptor-type Guanylyl Cyclases Confer Thermosensory Responses in C. elegans , 2016, Neuron.

[3]  N. Matsumoto,et al.  Ineffective quinidine therapy in early onset epileptic encephalopathy with KCNT1 mutation , 2016, Annals of neurology.

[4]  Ilan Gronau,et al.  Demographically-Based Evaluation of Genomic Regions under Selection in Domestic Dogs , 2016, PLoS genetics.

[5]  T. Montine,et al.  Glucocerebrosidase Deficiency in Drosophila Results in α-Synuclein-Independent Protein Aggregation and Neurodegeneration , 2016, PLoS genetics.

[6]  I. Mori,et al.  Single-Cell Memory Regulates a Neural Circuit for Sensory Behavior. , 2016, Cell reports.

[7]  Zhe Zhang,et al.  Epilepsy-Related Slack Channel Mutants Lead to Channel Over-Activity by Two Different Mechanisms. , 2016, Cell reports.

[8]  E. Jorgensen,et al.  SLO BK Potassium Channels Couple Gap Junctions to Inhibition of Calcium Signaling in Olfactory Neuron Diversification , 2016, PLoS genetics.

[9]  Rebecca C. Spillmann,et al.  Quinidine in the treatment of KCNT1‐positive epilepsies , 2015, Annals of neurology.

[10]  R. MacKinnon,et al.  Cryo-EM structure of the Slo2.2 Na+-activated K+ channel , 2015, Nature.

[11]  I. Mori,et al.  A glial K+/Cl− cotransporter modifies temperature‐evoked dynamics in Caenorhabditis elegans sensory neurons , 2015, Genes, brain, and behavior.

[12]  B. Meyer,et al.  Dramatic Enhancement of Genome Editing by CRISPR/Cas9 Through Improved Guide RNA Design , 2015, Genetics.

[13]  L. Kaczmarek,et al.  Human slack potassium channel mutations increase positive cooperativity between individual channels. , 2014, Cell reports.

[14]  S. V. Hooser,et al.  CaMKI-Dependent Regulation of Sensory Gene Expression Mediates Experience-Dependent Plasticity in the Operating Range of a Thermosensory Neuron , 2014, Neuron.

[15]  Claire E McKellar,et al.  Rational design of a high-affinity, fast, red calcium indicator R-CaMP2 , 2014, Nature Methods.

[16]  Bojun Chen,et al.  SLO-2 potassium channel is an important regulator of neurotransmitter release in Caenorhabditis elegans , 2014, Nature Communications.

[17]  Ethan M. Goldberg,et al.  Targeted treatment of migrating partial seizures of infancy with quinidine , 2014, Annals of neurology.

[18]  J. Pierce-Shimomura,et al.  Conserved Single Residue in the BK Potassium Channel Required for Activation by Alcohol and Intoxication in C. elegans , 2014, The Journal of Neuroscience.

[19]  M. Podda,et al.  New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels , 2014, Pflügers Archiv - European Journal of Physiology.

[20]  C. Mello,et al.  A Co-CRISPR Strategy for Efficient Genome Editing in Caenorhabditis elegans , 2014, Genetics.

[21]  I. Scheffer,et al.  KCNT1 gain of function in 2 epilepsy phenotypes is reversed by quinidine , 2014, Annals of neurology.

[22]  A. Stetak,et al.  Forgetting Is Regulated via Musashi-Mediated Translational Control of the Arp2/3 Complex , 2014, Cell.

[23]  C. Buck,et al.  Phenology of hibernation and reproduction in ground squirrels: integration of environmental cues with endogenous programming , 2014 .

[24]  M. Podda,et al.  New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels , 2013, Pflügers Archiv - European Journal of Physiology.

[25]  Damien M. O’Halloran,et al.  Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans , 2013, Journal of Cell Science.

[26]  Damien M. O’Halloran,et al.  GCY-8, PDE-2, and NCS-1 are critical elements of the cGMP-dependent thermotransduction cascade in the AFD neurons responsible for C. elegans thermotaxis , 2013, The Journal of general physiology.

[27]  Aravinthan D. T. Samuel,et al.  Defining Specificity Determinants of cGMP Mediated Gustatory Sensory Transduction in Caenorhabditis elegans , 2013, Genetics.

[28]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[29]  T. Ishihara,et al.  Forgetting in C. elegans is accelerated by neuronal communication via the TIR-1/JNK-1 pathway. , 2013, Cell reports.

[30]  Y. Kubo,et al.  Binding of Gq protein stabilizes the activated state of the muscarinic receptor type 1 , 2013, Neuropharmacology.

[31]  Christopher V. Gabel,et al.  Long-Term Imaging of Caenorhabditis elegans Using Nanoparticle-Mediated Immobilization , 2013, PloS one.

[32]  D. Moerman Large-Scale Screening for Targeted Knockouts in the Caenorhabditis elegans Genome , 2012, G3: Genes | Genomes | Genetics.

[33]  L. Kaczmarek,et al.  De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy , 2012, Nature Genetics.

[34]  Katherine R. Smith,et al.  Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy , 2012, Nature Genetics.

[35]  D. D. de Quervain,et al.  A role for α‐adducin (ADD‐1) in nematode and human memory , 2012, The EMBO journal.

[36]  M. Davis,et al.  Improved Mos1-mediated transgenesis in C. elegans , 2012, Nature Methods.

[37]  P. Sengupta,et al.  Regulation of Response Properties and Operating Range of the AFD Thermosensory Neurons by cGMP Signaling , 2011, Current Biology.

[38]  L. Salkoff,et al.  Genetic dissection of ion currents underlying all‐or‐none action potentials in C. elegans body‐wall muscle cells , 2011, The Journal of physiology.

[39]  Cornelia I. Bargmann,et al.  Neuropeptide feedback modifies odor-evoked dynamics in C. elegans olfactory neurons , 2010, Nature Neuroscience.

[40]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[41]  Erik M Jorgensen,et al.  Single-copy insertion of transgenes in Caenorhabditis elegans , 2008, Nature Genetics.

[42]  Jiu-ping Ding,et al.  Slack and Slick KNa channels are required for the depolarizing afterpotential of acutely isolated, medium diameter rat dorsal root ganglion neurons , 2008, Acta Pharmacologica Sinica.

[43]  Daniel Ramot,et al.  Bidirectional temperature-sensing by a single thermosensory neuron in C. elegans , 2008, Nature Neuroscience.

[44]  Koutarou D. Kimura,et al.  Temperature Sensing by an Olfactory Neuron in a Circuit Controlling Behavior of C. elegans , 2008, Science.

[45]  K. Doya Modulators of decision making , 2008, Nature Neuroscience.

[46]  Gabor T. Marth,et al.  Whole-genome sequencing and variant discovery in C. elegans , 2008, Nature Methods.

[47]  L. Salkoff,et al.  High-conductance potassium channels of the SLO family , 2006, Nature Reviews Neuroscience.

[48]  Damon A. Clark,et al.  A diacylglycerol kinase modulates long-term thermotactic behavioral plasticity in C. elegans , 2006, Nature Neuroscience.

[49]  Koutarou D. Kimura,et al.  Insulin-like signaling and the neural circuit for integrative behavior in C. elegans. , 2006, Genes & development.

[50]  W. Schafer,et al.  The Insulin/PI 3-Kinase Pathway Regulates Salt Chemotaxis Learning in Caenorhabditis elegans , 2006, Neuron.

[51]  L. Kaczmarek,et al.  Pharmacological activation and inhibition of Slack (Slo2.2) channels , 2006, Neuropharmacology.

[52]  Damon A. Clark,et al.  The AFD Sensory Neurons Encode Multiple Functions Underlying Thermotactic Behavior in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[53]  I. Mori,et al.  Quantitative analysis of thermotaxis in the nematode Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[54]  Hitoshi Inada,et al.  Identification of Guanylyl Cyclases That Function in Thermosensory Neurons of Caenorhabditis elegans , 2006, Genetics.

[55]  Suk-Woo Cho,et al.  A new putative cyclic nucleotide-gated channel gene, cng-3, is critical for thermotolerance in Caenorhabditis elegans. , 2004, Biochemical and biophysical research communications.

[56]  Koutarou D. Kimura,et al.  The C. elegans Thermosensory Neuron AFD Responds to Warming , 2004, Current Biology.

[57]  L. Kaczmarek,et al.  Slick (Slo2.1), a Rapidly-Gating Sodium-Activated Potassium Channel Inhibited by ATP , 2003, The Journal of Neuroscience.

[58]  Tod R. Thiele,et al.  A Central Role of the BK Potassium Channel in Behavioral Responses to Ethanol in C. elegans , 2003, Cell.

[59]  L. Salkoff,et al.  Dissection of K+ currents in Caenorhabditis elegans muscle cells by genetics and RNA interference , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[60]  J. Bessereau,et al.  [C. elegans: of neurons and genes]. , 2003, Medecine sciences : M/S.

[61]  G. Avanzini,et al.  Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons. , 2003, Journal of neurophysiology.

[62]  L. Kaczmarek,et al.  The Sodium-Activated Potassium Channel Is Encoded by a Member of the Slo Gene Family , 2003, Neuron.

[63]  Theodore Davis,et al.  Efficient isolation of targeted Caenorhabditis elegans deletion strains using highly thermostable restriction endonucleases and PCR , 2002, Nucleic acids research.

[64]  U. Kaupp,et al.  Cyclic nucleotide-gated ion channels. , 2002, Physiological reviews.

[65]  W. Gish,et al.  Rapid gene mapping in Caenorhabditis elegans using a high density polymorphism map , 2001, Nature Genetics.

[66]  L. Salkoff,et al.  SLO-2, a K+ channel with an unusual Cl− dependence , 2000, Nature Neuroscience.

[67]  Cori Bargmann,et al.  Functional reconstitution of a heteromeric cyclic nucleotide-gated channel of Caenorhabditis elegans in cultured cells , 1999, Brain Research.

[68]  L. Kaczmarek,et al.  Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits , 1998, Nature Neuroscience.

[69]  Ikue Mori,et al.  Mutations in a Cyclic Nucleotide–Gated Channel Lead to Abnormal Thermosensation and Chemosensation in C. elegans , 1996, Neuron.

[70]  Cori Bargmann,et al.  A Putative Cyclic Nucleotide–Gated Channel Is Required for Sensory Development and Function in C. elegans , 1996, Neuron.

[71]  I. Mori,et al.  Neural regulation of thermotaxis in Caenorhabditis elegans , 1995, Nature.

[72]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[73]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[74]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[75]  I. Aoki,et al.  Molecular Mechanisms of Learning in Caenorhabditis elegans , 2017 .

[76]  Xiao-Jing Wang,et al.  Neuronal Circuit Computation of Choice , 2014 .

[77]  J. Byrne Learning and memory : a comprehensive reference , 2008 .

[78]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.