Reconstruction of genetic circuits

The complex genetic circuits found in cells are ordinarily studied by analysis of genetic and biochemical perturbations. The inherent modularity of biological components like genes and proteins enables a complementary approach: one can construct and analyse synthetic genetic circuits based on their natural counterparts. Such synthetic circuits can be used as simple in vivo models to explore the relation between the structure and function of a genetic circuit. Here we describe recent progress in this area of synthetic biology, highlighting newly developed genetic components and biological lessons learned from this approach.

[1]  H. Judson The Eighth Day of Creation: Makers of the Revolution in Biology , 2013 .

[2]  Frieeland Judson Horace The eighth day of creation , 1979 .

[3]  M. Gossen,et al.  Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[5]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[6]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[7]  Rui Alves,et al.  Extending the method of mathematically controlled comparison to include numerical comparisons , 2000, Bioinform..

[8]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[9]  L. Serrano,et al.  Engineering stability in gene networks by autoregulation , 2000, Nature.

[10]  A. Levine,et al.  Surfing the p53 network , 2000, Nature.

[11]  J. Levine,et al.  Surfing the p53 network , 2000, Nature.

[12]  A. Arkin Synthetic cell biology. , 2001, Current opinion in biotechnology.

[13]  U. Alon,et al.  Negative autoregulation speeds the response times of transcription networks. , 2002, Journal of molecular biology.

[14]  Jeff Hasty,et al.  Engineered gene circuits , 2002, Nature.

[15]  Christopher A. Voigt,et al.  De novo design of biocatalysts. , 2002, Current opinion in chemical biology.

[16]  R. Weiss,et al.  Directed evolution of a genetic circuit , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[17]  M. Elowitz,et al.  Combinatorial Synthesis of Genetic Networks , 2002, Science.

[18]  P. Swain,et al.  Stochastic Gene Expression in a Single Cell , 2002, Science.

[19]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[20]  W. Lim,et al.  Reprogramming Control of an Allosteric Signaling Switch Through Modular Recombination , 2003, Science.

[21]  Uri Alon,et al.  Response delays and the structure of transcription networks. , 2003, Journal of molecular biology.

[22]  J. Ferrell,et al.  A positive-feedback-based bistable ‘memory module’ that governs a cell fate decision , 2003, Nature.

[23]  Michael W. Young,et al.  vrille, Pdp1, and dClock Form a Second Feedback Loop in the Drosophila Circadian Clock , 2003, Cell.

[24]  Wendell A. Lim,et al.  Rewiring MAP Kinase Pathways Using Alternative Scaffold Assembly Mechanisms , 2003, Science.

[25]  V. Ambros,et al.  Role of MicroRNAs in Plant and Animal Development , 2003, Science.

[26]  A. Ninfa,et al.  Development of Genetic Circuitry Exhibiting Toggle Switch or Oscillatory Behavior in Escherichia coli , 2003, Cell.

[27]  J. Paulsson Summing up the noise in gene networks , 2004, Nature.

[28]  Andrew W. Murray,et al.  The Ups and Downs of Modeling the Cell Cycle , 2004, Current Biology.

[29]  G. Church,et al.  Accurate multiplex gene synthesis from programmable DNA microchips , 2004, Nature.

[30]  Roger Brent,et al.  A partnership between biology and engineering , 2004, Nature Biotechnology.

[31]  J. Collins,et al.  Programmable cells: interfacing natural and engineered gene networks. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Daniel St Johnston,et al.  Seeing Is Believing The Bicoid Morphogen Gradient Matures , 2004, Cell.

[33]  Tanja Kortemme,et al.  Computational design of protein-protein interactions. , 2004, Current opinion in chemical biology.

[34]  B. Bassler,et al.  Bacterial social engagements. , 2004, Trends in cell biology.

[35]  Farren J. Isaacs,et al.  Engineered riboregulators enable post-transcriptional control of gene expression , 2004, Nature Biotechnology.

[36]  M. Fussenegger,et al.  An engineered epigenetic transgene switch in mammalian cells , 2004, Nature Biotechnology.

[37]  Martin Fussenegger,et al.  Hysteresis in a synthetic mammalian gene network. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Endy Foundations for engineering biology , 2005, Nature.

[39]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[40]  P. Hardin,et al.  The Circadian Timekeeping System of Drosophila , 2005, Current Biology.

[41]  J. Chin,et al.  A network of orthogonal ribosome·mRNA pairs , 2005, Nature chemical biology.

[42]  Tony Pawson,et al.  Synthetic modular systems – reverse engineering of signal transduction , 2005, FEBS letters.

[43]  T. Kondo,et al.  Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro , 2005, Science.

[44]  J. Liao,et al.  A synthetic gene–metabolic oscillator , 2005, Nature.

[45]  R. Weiss,et al.  Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  A. van Oudenaarden,et al.  Noise Propagation in Gene Networks , 2005, Science.

[47]  S. Basu,et al.  A synthetic multicellular system for programmed pattern formation , 2005, Nature.

[48]  Travis S. Bayer,et al.  Programmable ligand-controlled riboregulators of eukaryotic gene expression , 2005, Nature Biotechnology.

[49]  R. Weiss,et al.  Advances in synthetic biology: on the path from prototypes to applications. , 2005, Current opinion in biotechnology.