Methods for studying the zebrafish brain: past, present and future

The zebrafish (Danio rerio) is one of the most promising new model organisms. The increasing popularity of this amazing small vertebrate is evident from the exponentially growing numbers of research articles, funded projects and new discoveries associated with the use of zebrafish for studying development, brain function, human diseases and screening for new drugs. Thanks to the development of novel technologies, the range of zebrafish research is constantly expanding with new tools synergistically enhancing traditional techniques. In this review we will highlight the past and present techniques which have made, and continue to make, zebrafish an attractive model organism for various fields of biology, with a specific focus on neuroscience.

[1]  Rui F. Oliveira,et al.  Fighting zebrafish: characterization of aggressive behavior and winner-loser effects. , 2011, Zebrafish.

[2]  Alexander F Schier,et al.  Behavioral screening for neuroactive drugs in zebrafish , 2012, Developmental neurobiology.

[3]  Stephan C F Neuhauss,et al.  Contrast sensitivity, spatial and temporal tuning of the larval zebrafish optokinetic response. , 2005, Investigative ophthalmology & visual science.

[4]  S. Rees,et al.  Principles of early drug discovery , 2011, British journal of pharmacology.

[5]  M. Hagmann,et al.  Homologous Recombination and DNA-End Joining Reactions in Zygotes and Early Embryos of Zebrafish (Danio rerio) and Drosophila melanogaster , 1998, Biological chemistry.

[6]  M. Noyes,et al.  Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases , 2008, Nature Biotechnology.

[7]  Chie Satou,et al.  Hindbrain V2a Neurons in the Excitation of Spinal Locomotor Circuits during Zebrafish Swimming , 2013, Current Biology.

[8]  C. Chien,et al.  Gal80 intersectional regulation of cell‐type specific expression in vertebrates , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[9]  O. Kah,et al.  Heterogeneity in progenitor cell subtypes in the ventricular zone of the zebrafish adult telencephalon , 2010, Glia.

[10]  An Xiao,et al.  Heritable gene targeting in zebrafish using customized TALENs , 2011, Nature Biotechnology.

[11]  Herwig Baier,et al.  Optogenetic perturbations reveal the dynamics of an oculomotor integrator , 2014, Front. Neural Circuits.

[12]  J. Pittman,et al.  iPhone® applications as versatile video tracking tools to analyze behavior in zebrafish (Danio rerio) , 2013, Pharmacology Biochemistry and Behavior.

[13]  B. Sauer,et al.  Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. , 1987, Molecular and cellular biology.

[14]  G. Bruni,et al.  Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish , 2014, Front. Pharmacol..

[15]  Michael Granato,et al.  Sensorimotor Gating in Larval Zebrafish , 2007, The Journal of Neuroscience.

[16]  J. Eisen,et al.  Controlling morpholino experiments: don't stop making antisense , 2008, Development.

[17]  K. Kawakami,et al.  Targeted gene expression by the Gal4‐UAS system in zebrafish , 2008, Development, Growth and Differentiation.

[18]  M. Vianna,et al.  A one-trial inhibitory avoidance task to zebrafish: Rapid acquisition of an NMDA-dependent long-term memory , 2009, Neurobiology of Learning and Memory.

[19]  A. Traven,et al.  Yeast Gal4: a transcriptional paradigm revisited , 2006, EMBO reports.

[20]  W. A. Harris,et al.  Characterization and development of courtship in zebrafish, Danio rerio. , 2004, Zebrafish.

[21]  Yi Zhou,et al.  A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. , 2015, Developmental cell.

[22]  M. Brand,et al.  The zebrafish CreZoo: an easy-to-handle database for novel CreER(T2)-driver lines. , 2013, Zebrafish.

[23]  S. Higashijima,et al.  Dopamine from the brain promotes spinal motor neuron generation during development and adult regeneration. , 2013, Developmental cell.

[24]  Steven A. Harvey,et al.  A systematic genome-wide analysis of zebrafish protein-coding gene function , 2013, Nature.

[25]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[26]  Rainer W Friedrich,et al.  Topological Reorganization of Odor Representations in the Olfactory Bulb , 2007, PLoS biology.

[27]  A. Klug,et al.  Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases , 2008, Proceedings of the National Academy of Sciences.

[28]  P. Drapeau,et al.  Time course of the development of motor behaviors in the zebrafish embryo. , 1998, Journal of neurobiology.

[29]  M. Orger,et al.  Whole-Brain Activity Maps Reveal Stereotyped, Distributed Networks for Visuomotor Behavior , 2014, Neuron.

[30]  Fyodor D Urnov,et al.  In vivo cleavage of transgene donors promotes nuclease‐mediated targeted integration , 2013, Biotechnology and bioengineering.

[31]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[32]  T. Becker,et al.  Axonal regeneration in zebrafish , 2014, Current Opinion in Neurobiology.

[33]  S. Romano,et al.  The first mecp2-null zebrafish model shows altered motor behaviors , 2013, Front. Neural Circuits.

[34]  F. Engert,et al.  Direction selectivity in the larval zebrafish tectum is mediated by asymmetric inhibition , 2012, Front. Neural Circuits.

[35]  Stephen L. Johnson,et al.  nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. , 1999, Development.

[36]  Cameron Wyatt,et al.  Sonic Hedgehog Is a Polarized Signal for Motor Neuron Regeneration in Adult Zebrafish , 2009, The Journal of Neuroscience.

[37]  C. Nüsslein-Volhard,et al.  Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate , 1994, Current Biology.

[38]  E. Kremmer,et al.  Notch Activity Levels Control the Balance between Quiescence and Recruitment of Adult Neural Stem Cells , 2010, The Journal of Neuroscience.

[39]  Analysis of the astray/robo2 Zebrafish Mutant Reveals that Degenerating Tracts Do Not Provide Strong Guidance Cues for Regenerating Optic Axons , 2010, The Journal of Neuroscience.

[40]  S. Ekker,et al.  Lessons from morpholino-based screening in zebrafish , 2011, Briefings in functional genomics.

[41]  Wolfgang Rottbauer,et al.  High-throughput assay for small molecules that modulate zebrafish embryonic heart rate , 2005, Nature chemical biology.

[42]  R. Roberts,et al.  A Dynamic Epicardial Injury Response Supports Progenitor Cell Activity during Zebrafish Heart Regeneration , 2006, Cell.

[43]  C. Kimmel,et al.  Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish , 2003, Development.

[44]  H Okamoto,et al.  High-frequency generation of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using promoters of zebrafish origin. , 1997, Developmental biology.

[45]  C. Lien,et al.  fgf20 Is Essential for Initiating Zebrafish Fin Regeneration , 2005, Science.

[46]  C. Nüsslein-Volhard,et al.  Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. , 2009, Developmental biology.

[47]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[48]  E. Bamberg,et al.  Channelrhodopsin-1: A Light-Gated Proton Channel in Green Algae , 2002, Science.

[49]  S. Haggarty,et al.  Zebrafish Behavioral Profiling Links Drugs to Biological Targets and Rest/Wake Regulation , 2010, Science.

[50]  M. Westerfield,et al.  Development and axonal outgrowth of identified motoneurons in the zebrafish , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[51]  Jean-Paul Concordet,et al.  Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair , 2014, Genome research.

[52]  R. Barrangou,et al.  CRISPR Provides Acquired Resistance Against Viruses in Prokaryotes , 2007, Science.

[53]  J. Eisen Determination of primary motoneuron identity in developing zebrafish embryos. , 1991, Science.

[54]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[55]  R. Farley,et al.  Mauthner neuron field potential in newly hatched larvae of the zebra fish. , 1975, Journal of neurophysiology.

[56]  Zuoyan Zhu,et al.  Non-Homologous End Joining Plays a Key Role in Transgene Concatemer Formation in Transgenic Zebrafish Embryos , 2010, International journal of biological sciences.

[57]  S. Lukyanov,et al.  Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics , 2010, BMC Developmental Biology.

[58]  Yuji Ikegaya,et al.  Genetically Encoded Green Fluorescent Ca2+ Indicators with Improved Detectability for Neuronal Ca2+ Signals , 2012, PloS one.

[59]  Takashi Kawashima,et al.  Mapping brain activity at scale with cluster computing , 2014, Nature Methods.

[60]  C. Moens,et al.  Reverse genetics in zebrafish by TILLING. , 2008, Briefings in functional genomics & proteomics.

[61]  Kathryn E. Crosier,et al.  Runx1 is required for zebrafish blood and vessel development and expression of a human RUNX1-CBF2T1 transgene advances a model for studies of leukemogenesis. , 2002, Development.

[62]  Toshihiko Hosoya,et al.  Genetic Single-Cell Mosaic Analysis Implicates ephrinB2 Reverse Signaling in Projections from the Posterior Tectum to the Hindbrain in Zebrafish , 2007, The Journal of Neuroscience.

[63]  E. Yaksi,et al.  Spontaneous Activity Governs Olfactory Representations in Spatially Organized Habenular Microcircuits , 2014, Current Biology.

[64]  A. Grinvald,et al.  Spatio-Temporal Dynamics of Odor Representations in the Mammalian Olfactory Bulb , 2002, Neuron.

[65]  T. Bonhoeffer,et al.  Doxycycline-dependent photoactivated gene expression in eukaryotic systems , 2009, Nature Methods.

[66]  James K. Chen,et al.  Small-molecule regulation of zebrafish gene expression. , 2007, Nature chemical biology.

[67]  S. Jesuthasan,et al.  The Alarm Response in Zebrafish: Innate Fear in a Vertebrate Genetic Model , 2008, Journal of neurogenetics.

[68]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[69]  D. Balciunas,et al.  Efficient disruption of Zebrafish genes using a Gal4-containing gene trap , 2013, BMC Genomics.

[70]  Elo Leung,et al.  Knockout rats generated by embryo microinjection of TALENs , 2011, Nature Biotechnology.

[71]  D. H. de Jong,et al.  Long term effects of spinal cord transection in zebrafish: swimming performances, and metabolic properties of the neuromuscular system. , 1998, Acta histochemica.

[72]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[73]  Julian Lewis,et al.  MAZe: a tool for mosaic analysis of gene function in zebrafish , 2010, Nature Methods.

[74]  Scott C. Baraban,et al.  Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet Syndrome treatment , 2013, Nature Communications.

[75]  Shondra M Pruett-Miller,et al.  High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases , 2011, Nature Methods.

[76]  G. Gerlach,et al.  The behaviour and ecology of the zebrafish, Danio rerio , 2007, Biological reviews of the Cambridge Philosophical Society.

[77]  A. Emelyanov,et al.  Mifepristone-inducible LexPR system to drive and control gene expression in transgenic zebrafish. , 2008, Developmental biology.

[78]  S. Fraser,et al.  Tracing transgene expression in living zebrafish embryos. , 2001, Developmental biology.

[79]  Marcello Maresca,et al.  Obligate Ligation-Gated Recombination (ObLiGaRe): Custom-designed nuclease-mediated targeted integration through nonhomologous end joining , 2013, Genome research.

[80]  Michael J. Parsons,et al.  Adoption of the Q transcriptional regulatory system for zebrafish transgenesis. , 2014, Methods.

[81]  A. Magurran,et al.  Is there a fish alarm pheromone? A wild study and critique , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[82]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[83]  J. Silver,et al.  CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure , 2008, Experimental Neurology.

[84]  D A Kane,et al.  Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. , 1996, Development.

[85]  B. Riley,et al.  Sox2 is required for maintenance and regeneration, but not initial development, of hair cells in the zebrafish inner ear. , 2010, Developmental biology.

[86]  R. Colwill,et al.  Visual discrimination learning in zebrafish (Danio rerio) , 2005, Behavioural Processes.

[87]  Kevin Kim,et al.  A TALEN genome-editing system for generating human stem cell-based disease models. , 2013, Cell stem cell.

[88]  M. Wullimann,et al.  Optimized Gal4 genetics for permanent gene expression mapping in zebrafish , 2009, Proceedings of the National Academy of Sciences.

[89]  Heiner Grandel,et al.  Stem Cells in the Adult Zebrafish Cerebellum: Initiation and Maintenance of a Novel Stem Cell Niche , 2009, The Journal of Neuroscience.

[90]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[91]  R. Thummel,et al.  In vivo Electroporation of Morpholinos into the Adult Zebrafish Retina , 2011, Journal of visualized experiments : JoVE.

[92]  J. Clarke,et al.  Focal electroporation in zebrafish embryos and larvae. , 2009, Methods in molecular biology.

[93]  R. Ho,et al.  Cell-autonomous action of zebrafish spt-1 mutation in specific mesodermal precursors , 1990, Nature.

[94]  S. Baraban,et al.  Spontaneous Seizures and Altered Gene Expression in GABA Signaling Pathways in a mind bomb Mutant Zebrafish , 2010, The Journal of Neuroscience.

[95]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[96]  L. Hao,et al.  Generation and Characterization of a genetic zebrafish model of SMA carrying the human SMN2 gene , 2011, Molecular Neurodegeneration.

[97]  F. Engert,et al.  Two-photon calcium imaging during fictive navigation in virtual environments , 2013, Front. Neural Circuits.

[98]  Daesik Kim,et al.  Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins , 2014, Genome research.

[99]  D J Segal,et al.  Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[100]  H. López-Schier,et al.  Delaying Gal4-Driven Gene Expression in the Zebrafish with Morpholinos and Gal80 , 2011, PloS one.

[101]  Suqi Zou,et al.  Neurogenesis of Retinal Ganglion Cells Is Not Essential to Visual Functional Recovery after Optic Nerve Injury in Adult Zebrafish , 2013, PloS one.

[102]  Toni Cathomen,et al.  Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases , 2007, Nature Biotechnology.

[103]  Susan E. Brockerhoff,et al.  Measuring the optokinetic response of zebrafish larvae , 2006, Nature Protocols.

[104]  R. Gerlai,et al.  Associative learning in zebrafish (Danio rerio) in the plus maze , 2010, Behavioural Brain Research.

[105]  Rainer W Friedrich,et al.  High-resolution optical control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror device , 2012, Nature Protocols.

[106]  N. Divecha,et al.  Impaired neural development in a zebrafish model for Lowe syndrome , 2011, Human molecular genetics.

[107]  M. Schachner,et al.  Major vault protein promotes locomotor recovery and regeneration after spinal cord injury in adult zebrafish , 2013, The European journal of neuroscience.

[108]  Jun Ma,et al.  GAL4-VP16 is an unusually potent transcriptional activator , 1988, Nature.

[109]  Masahiko Hibi,et al.  Genetic dissection of neural circuits by Tol2 transposon-mediated Gal4 gene and enhancer trapping in zebrafish , 2008, Proceedings of the National Academy of Sciences.

[110]  Sebastian T. Bundschuh,et al.  Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System , 2009, Front. Neural Circuits.

[111]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[112]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[113]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[114]  R. Ho,et al.  Commitment of cell fate in the early zebrafish embryo. , 1993, Science.

[115]  C. Betsholtz,et al.  Reverse genetic screening reveals poor correlation between morpholino-induced and mutant phenotypes in zebrafish. , 2015, Developmental cell.

[116]  Stephen L. Johnson,et al.  Mps1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. , 2002, Development.

[117]  N. Henderson,et al.  Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[118]  E. Yaksi,et al.  Neural circuits mediating olfactory-driven behavior in fish , 2013, Front. Neural Circuits.

[119]  Citlali Pérez Campos,et al.  High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics , 2013, Nature Communications.

[120]  M. Nicolelis,et al.  Induction of immediate spatiotemporal changes in thalamic networks by peripheral block of ascending cutaneous information , 1993, Nature.

[121]  P. Panula,et al.  Presenilin1 Regulates Histamine Neuron Development and Behavior in Zebrafish, Danio rerio , 2013, The Journal of Neuroscience.

[122]  J. Gitlin,et al.  Zebrafish Mutants calamity and catastrophe Define Critical Pathways of Gene–Nutrient Interactions in Developmental Copper Metabolism , 2008, PLoS genetics.

[123]  Karl Deisseroth,et al.  Improved expression of halorhodopsin for light-induced silencing of neuronal activity , 2008, Brain cell biology.

[124]  Joel Ryan,et al.  Impaired dopaminergic neuron development and locomotor function in zebrafish with loss of pink1 function , 2010, The European journal of neuroscience.

[125]  G. Streisinger,et al.  INDUCTION OF MUTATIONS BY γ-RAYS IN PREGONIAL GERM CELLS OF ZEBRAFISH EMBRYOS , 1983 .

[126]  P. Hegemann,et al.  The photocycle of the chloride pump halorhodopsin. I: Azidecatalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump , 1985, The EMBO journal.

[127]  Greg J. Stephens,et al.  Automated Tracking of Animal Posture and Movement during Exploration and Sensory Orientation Behaviors , 2012, PloS one.

[128]  P. Hegemann,et al.  The photocycle of the chloride pump halorhodopsin. II: Quantum yields and a kinetic model , 1985, The EMBO journal.

[129]  Nieng Yan,et al.  Structural Basis for Sequence-Specific Recognition of DNA by TAL Effectors , 2012, Science.

[130]  V. Tropepe,et al.  Sensory‐specific modulation of adult neurogenesis in sensory structures is associated with the type of stem cell present in the neurogenic niche of the zebrafish brain , 2014, The European journal of neuroscience.

[131]  J. Fetcho,et al.  Visualization of active neural circuitry in the spinal cord of intact zebrafish. , 1995, Journal of neurophysiology.

[132]  E. Boyden,et al.  Multiple-Color Optical Activation, Silencing, and Desynchronization of Neural Activity, with Single-Spike Temporal Resolution , 2007, PloS one.

[133]  Qi Zhou,et al.  Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems , 2013, Nature Biotechnology.

[134]  Yongxiang Zhao,et al.  Heritable gene targeting in the mouse and rat using a CRISPR-Cas system , 2013, Nature Biotechnology.

[135]  K. Stankunas,et al.  Spatial and Temporal Control of Transgene Expression in Zebrafish , 2014, PloS one.

[136]  U. Bonas,et al.  Xanthomonas AvrBs3 family-type III effectors: discovery and function. , 2010, Annual review of phytopathology.

[137]  H. Bellen,et al.  Ten Years of Enhancer Detection: Lessons from the Fly , 1999, Plant Cell.

[138]  E. Kandel,et al.  Control of Memory Formation Through Regulated Expression of a CaMKII Transgene , 1996, Science.

[139]  L. Zon,et al.  Transparent adult zebrafish as a tool for in vivo transplantation analysis. , 2008, Cell stem cell.

[140]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[141]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[142]  Mark A Masino,et al.  Imaging neuronal activity during zebrafish behavior with a genetically encoded calcium indicator. , 2003, Journal of neurophysiology.

[143]  A. Sporbert,et al.  Cell tracking using photoconvertible proteins during zebrafish development. , 2012, Journal of visualized experiments : JoVE.

[144]  Robert Gerlai,et al.  Zebrafish as an emerging model for studying complex brain disorders. , 2014, Trends in pharmacological sciences.

[145]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[146]  B. Paw,et al.  Mutation mapping and identification by whole-genome sequencing , 2012, Genome research.

[147]  A. Look,et al.  Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[148]  W. Heyer,et al.  Homologous recombination , 2005, Experientia.

[149]  Meera T Saxena,et al.  Advances in zebrafish chemical screening technologies. , 2012, Future medicinal chemistry.

[150]  T. Valentinčič,et al.  Correlations between olfactory discrimination, olfactory receptor neuron responses and chemotopy of amino acids in fishes. , 2005, Chemical senses.

[151]  R. Wingert,et al.  Congenital and Acute Kidney Disease: Translational Research Insights from Zebrafish Chemical Genetics. , 2013, General medicine.

[152]  G. Streisinger,et al.  Induction of Mutations by gamma-Rays in Pregonial Germ Cells of Zebrafish Embryos. , 1983, Genetics.

[153]  M. Westerfield,et al.  Function of identified motoneurones and co‐ordination of primary and secondary motor systems during zebra fish swimming. , 1988, The Journal of physiology.

[154]  A. Grinvald,et al.  Imaging Cortical Dynamics at High Spatial and Temporal Resolution with Novel Blue Voltage-Sensitive Dyes , 1999, Neuron.

[155]  G. Ming,et al.  Adult Neurogenesis in the Mammalian Brain: Significant Answers and Significant Questions , 2011, Neuron.

[156]  K. Deisseroth,et al.  Millisecond-timescale, genetically targeted optical control of neural activity , 2005, Nature Neuroscience.

[157]  Anton J. Enright,et al.  The zebrafish reference genome sequence and its relationship to the human genome , 2013, Nature.

[158]  Kurt Haas,et al.  Single-Cell Electroporationfor Gene Transfer In Vivo , 2001, Neuron.

[159]  Randall T Peterson,et al.  15 years of zebrafish chemical screening. , 2015, Current opinion in chemical biology.

[160]  Duhee Bang,et al.  A library of TAL effector nucleases spanning the human genome , 2013, Nature Biotechnology.

[161]  J. Fetcho,et al.  Cyclic AMP-Induced Repair of Zebrafish Spinal Circuits , 2004, Science.

[162]  D. O'Malley,et al.  Locomotor repertoire of the larval zebrafish: swimming, turning and prey capture. , 2000, The Journal of experimental biology.

[163]  홀덴 데이비드윌리암,et al.  Identification of genes , 1995 .

[164]  Thomas Gaj,et al.  Directed evolution of an enhanced and highly efficient FokI cleavage domain for zinc finger nucleases. , 2010, Journal of molecular biology.

[165]  F. Del Bene,et al.  Optical Sectioning Deep Inside Live Embryos by Selective Plane Illumination Microscopy , 2004, Science.

[166]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[167]  Ping Song,et al.  Knockdown of Amyloid Precursor Protein in Zebrafish Causes Defects in Motor Axon Outgrowth , 2012, PloS one.

[168]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[169]  Á. Raya,et al.  Activation of Notch signaling pathway precedes heart regeneration in zebrafish , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[170]  Stephen L. Johnson,et al.  Positional cloning of a temperature-sensitive mutant emmental reveals a role for sly1 during cell proliferation in zebrafish fin regeneration. , 2003, Developmental biology.

[171]  Rafael Yuste,et al.  Book Review: On the Function of Dendritic Spines , 2001 .

[172]  Jill A. Morris,et al.  Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. , 2009, Progress in brain research.

[173]  G. Stuart,et al.  Transgene manipulation in zebrafish by using recombinases. , 2004, Methods in cell biology.

[174]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[175]  D. Otteson,et al.  Stem cells in the teleost retina: persistent neurogenesis and injury-induced regeneration , 2003, Vision Research.

[176]  Xiaojun Zhu,et al.  Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos , 2013, Cell Research.

[177]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[178]  Herwig Baier,et al.  Targeting neural circuitry in zebrafish using GAL4 enhancer trapping , 2007, Nature Methods.

[179]  C. Wright,et al.  Zebrafish nodal-related 2 encodes an early mesendodermal inducer signaling from the extraembryonic yolk syncytial layer. , 1998, Developmental biology.

[180]  Elo Leung,et al.  A TALE nuclease architecture for efficient genome editing , 2011, Nature Biotechnology.

[181]  C. Gersbach,et al.  Highly active zinc-finger nucleases by extended modular assembly , 2013, Genome research.

[182]  J S Kauer,et al.  Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. III. Spatial and temporal properties of responses evoked by odorant stimulation. , 1995, Journal of neurophysiology.

[183]  M. Schachner,et al.  Cysteine‐ and glycine‐rich protein 1a is involved in spinal cord regeneration in adult zebrafish , 2012, The European journal of neuroscience.

[184]  Philipp J. Keller,et al.  Whole-brain functional imaging at cellular resolution using light-sheet microscopy , 2013, Nature Methods.

[185]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[186]  Olivier Mirat,et al.  ZebraZoom: an automated program for high-throughput behavioral analysis and categorization , 2013, Front. Neural Circuits.

[187]  D. Carroll Genome Engineering With Zinc-Finger Nucleases , 2011, Genetics.

[188]  R. Llinás,et al.  Dynamic organization of motor control within the olivocerebellar system , 1995, Nature.

[189]  B. Zemelman,et al.  Two-photon single-cell optogenetic control of neuronal activity by sculpted light , 2010, Proceedings of the National Academy of Sciences.

[190]  D. Wilkinson,et al.  Neuronal regulation of the spatial patterning of neurogenesis. , 2010, Developmental cell.

[191]  Aristides B. Arrenberg,et al.  Functional Architecture of an Optic Flow-Responsive Area that Drives Horizontal Eye Movements in Zebrafish , 2014, Neuron.

[192]  M. Ptashne,et al.  The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80 , 1987, Cell.

[193]  B. Sauer Inducible gene targeting in mice using the Cre/lox system. , 1998, Methods.

[194]  Jun Li,et al.  Early Development of Functional Spatial Maps in the Zebrafish Olfactory Bulb , 2005, The Journal of Neuroscience.

[195]  M. Sarras,et al.  Cre-mediated site-specific recombination in zebrafish embryos , 2006 .

[196]  T. Kohashi,et al.  Behavioral/systems/cognitive Effective Sensory Modality Activating an Escape Triggering Neuron Switches during Early Development in Zebrafish Laser Ablation of the M-cell and Ca 2ϩ Imaging of the M-cell during Escape Demonstrated That M-cell Firing Is Required to Initiate Short-latency Fast Escapes , 2022 .

[197]  D. Balciunas,et al.  Development and Notch Signaling Requirements of the Zebrafish Choroid Plexus , 2008, PloS one.

[198]  William A. Harris,et al.  Genetic Disorders of Vision Revealed by a Behavioral Screen of 400 Essential Loci in Zebrafish , 1999, The Journal of Neuroscience.

[199]  J. Keith Joung,et al.  Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs , 2012, Nucleic acids research.

[200]  D. Stainier,et al.  deLiver'in regeneration: injury response and development. , 2010, Seminars in liver disease.

[201]  M. Sofroniew Molecular dissection of reactive astrogliosis and glial scar formation , 2009, Trends in Neurosciences.

[202]  C. Nüsslein-Volhard The zebrafish issue of Development , 2012, Development.

[203]  E. Rebar,et al.  Genome editing with engineered zinc finger nucleases , 2010, Nature Reviews Genetics.

[204]  C. Nüsslein-Volhard,et al.  no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. , 1994, Development.

[205]  F. Hsieh,et al.  Conditional expression of a myocardium‐specific transgene in zebrafish transgenic lines , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[206]  A. Higginbottom,et al.  A new zebrafish model produced by TILLING of SOD1-related amyotrophic lateral sclerosis replicates key features of the disease and represents a tool for in vivo therapeutic screening , 2013, Disease Models & Mechanisms.

[207]  Melissa Hardy,et al.  The Tol2kit: A multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[208]  R. W. Draft,et al.  Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system , 2007, Nature.

[209]  G. Zupanc,et al.  New neurons for the injured brain: mechanisms of neuronal regeneration in adult teleost fish. , 2006, Regenerative medicine.

[210]  Stephan C F Neuhauss,et al.  Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. , 2013, Zebrafish.

[211]  P. Morcos Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos. , 2007, Biochemical and biophysical research communications.

[212]  Sooyoung Chung,et al.  Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex , 2005, Nature.

[213]  Yen-Hong Kao,et al.  Imaging the Functional Organization of Zebrafish Hindbrain Segments during Escape Behaviors , 1996, Neuron.

[214]  Johann H. Bollmann,et al.  Classification of Object Size in Retinotectal Microcircuits , 2014, Current Biology.

[215]  E. Boyden,et al.  Simultaneous whole-animal 3D-imaging of neuronal activity using light-field microscopy , 2014, Nature Methods.

[216]  B. Brown,et al.  Modulation of the proteoglycan receptor PTPσ promotes recovery after spinal cord injury , 2014, Nature.

[217]  Andrew M. Petzold,et al.  A primer for morpholino use in zebrafish. , 2009, Zebrafish.

[218]  B. González,et al.  Modular system for the construction of zinc-finger libraries and proteins , 2010, Nature Protocols.

[219]  Michael Nguyen,et al.  Developing zebrafish models of autism spectrum disorder (ASD) , 2014, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[220]  Robert Gerlai,et al.  Sight of conspecifics as reward in associative learning in zebrafish (Danio rerio) , 2008, Behavioural Brain Research.

[221]  Rafael Yuste,et al.  Analysis of multineuronal activation patterns from calcium-imaging experiments in brain slices. , 2002, Trends in cardiovascular medicine.

[222]  S. Sivasubbu,et al.  Efficient gene delivery and gene expression in zebrafish using the Sleeping Beauty transposon. , 2003, Developmental biology.

[223]  Samuel S. Hunter,et al.  Retinal regeneration is facilitated by the presence of surviving neurons , 2014, Developmental neurobiology.

[224]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[225]  R. Beerli,et al.  Engineering polydactyl zinc-finger transcription factors , 2002, Nature Biotechnology.

[226]  M. Gossen,et al.  Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[227]  Le A. Trinh,et al.  Enhancer and gene traps for molecular imaging and genetic analysis in zebrafish , 2013, Development, growth & differentiation.

[228]  Junichi Nakai,et al.  Real-Time Visualization of Neuronal Activity during Perception , 2013, Current Biology.

[229]  W. Denk,et al.  Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli. , 2001, The European journal of neuroscience.

[230]  T. Hocking,et al.  Heritable Targeted Gene Disruption in Zebrafish Using Designed Zinc Finger Nucleases , 2008, Nature Biotechnology.

[231]  Stuart L Schreiber,et al.  Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation , 2004, Nature Biotechnology.

[232]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[233]  M. Götz,et al.  Conserved and acquired features of adult neurogenesis in the zebrafish telencephalon. , 2006, Developmental biology.

[234]  Y. Sheng,et al.  ULtiMATE System for Rapid Assembly of Customized TAL Effectors , 2013, PloS one.

[235]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[236]  H. Lusic,et al.  Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. , 2010, Journal of the American Chemical Society.

[237]  Daniel F. Voytas,et al.  Simple Methods for Generating and Detecting Locus-Specific Mutations Induced with TALENs in the Zebrafish Genome , 2012, PLoS genetics.

[238]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[239]  M. Schachner,et al.  Syntenin‐a promotes spinal cord regeneration following injury in adult zebrafish , 2013, The European journal of neuroscience.

[240]  Aristides B. Arrenberg,et al.  Optogenetic Control of Cardiac Function , 2010, Science.

[241]  S. Baraban,et al.  A Large‐scale Mutagenesis Screen to Identify Seizure‐resistant Zebrafish , 2007, Epilepsia.

[242]  H. Maaswinkel,et al.  Using an Automated 3D-tracking System to Record Individual and Shoals of Adult Zebrafish , 2013, Journal of Visualized Experiments.

[243]  J. Kaslin,et al.  Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon , 2010, Glia.

[244]  F. Engert,et al.  Escape Behavior Elicited by Single, Channelrhodopsin-2-Evoked Spikes in Zebrafish Somatosensory Neurons , 2008, Current Biology.

[245]  Imaging functional neural circuits in zebrafish with a new GCaMP and the Gal4FF-UAS system. , 2011, Communicative & integrative biology.

[246]  Dipali G. Sashital,et al.  Mechanism of foreign DNA selection in a bacterial adaptive immune system. , 2012, Molecular cell.

[247]  Matt Wachowiak,et al.  Distributed and concentration-invariant spatial representations of odorants by receptor neuron input to the turtle olfactory bulb. , 2002, Journal of neurophysiology.

[248]  Lili Jing,et al.  Small molecule screening in zebrafish: swimming in potential drug therapies , 2012, Wiley interdisciplinary reviews. Developmental biology.

[249]  Jeffry D. Sander,et al.  Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System , 2013, PloS one.

[250]  R. Friedrich,et al.  Early functional development of interneurons in the zebrafish olfactory bulb , 2007, The European journal of neuroscience.

[251]  M. Westerfield,et al.  Neuromuscular specificity: pathfinding by identified motor growth cones in a vertebrate embryo , 1988, Trends in Neurosciences.

[252]  J. Feldner,et al.  Contactin1a expression is associated with oligodendrocyte differentiation and axonal regeneration in the central nervous system of zebrafish , 2007, Molecular and Cellular Neuroscience.

[253]  S. Hellberg,et al.  A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. , 2009, The Journal of clinical investigation.

[254]  J. Kaslin,et al.  Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. , 2006, Developmental biology.

[255]  Peter Krawitz,et al.  Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish , 2013, Development.

[256]  Stephen W. Wilson,et al.  Brain asymmetry is encoded at the level of axon terminal morphology , 2008, Neural Development.

[257]  Herwig Baier,et al.  Visual Prey Capture in Larval Zebrafish Is Controlled by Identified Reticulospinal Neurons Downstream of the Tectum , 2005, The Journal of Neuroscience.

[258]  J. C. Belmonte,et al.  A histone demethylase is necessary for regeneration in zebrafish , 2009, Proceedings of the National Academy of Sciences.

[259]  J. Feldner,et al.  L1.1 Is Involved in Spinal Cord Regeneration in Adult Zebrafish , 2004, The Journal of Neuroscience.

[260]  L. Kunkel,et al.  Drug screening in a zebrafish model of Duchenne muscular dystrophy , 2011, Proceedings of the National Academy of Sciences.

[261]  C. Kimmel,et al.  The zebrafish midblastula transition. , 1993, Development.

[262]  M. Granato,et al.  Chemical modulation of memory formation in larval zebrafish , 2011, Proceedings of the National Academy of Sciences.

[263]  Kerry R. Delaney,et al.  Odour‐evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli , 2001 .

[264]  Randall T Peterson,et al.  Using the zebrafish photomotor response for psychotropic drug screening. , 2011, Methods in cell biology.

[265]  A. Consiglio,et al.  The zebrafish as a model of heart regeneration. , 2004, Cloning and stem cells.

[266]  Yue Li,et al.  Zebrafish nephrogenesis is regulated by interactions between retinoic acid, mecom, and Notch signaling. , 2014, Developmental biology.

[267]  Guy Salama,et al.  Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[268]  Florian Engert,et al.  Prey Capture Behavior Evoked by Simple Visual Stimuli in Larval Zebrafish , 2011, Front. Syst. Neurosci..

[269]  P. Morcos,et al.  Vivo-Morpholinos: a non-peptide transporter delivers Morpholinos into a wide array of mouse tissues. , 2008, BioTechniques.

[270]  J. Kaslin,et al.  Generation of a non‐leaky heat shock–inducible Cre line for conditional Cre/lox strategies in zebrafish , 2011, Developmental dynamics : an official publication of the American Association of Anatomists.

[271]  H Okamoto,et al.  Visualization of Cranial Motor Neurons in Live Transgenic Zebrafish Expressing Green Fluorescent Protein Under the Control of the Islet-1 Promoter/Enhancer , 2000, The Journal of Neuroscience.

[272]  Susan R. Wente,et al.  Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system , 2013, Proceedings of the National Academy of Sciences.

[273]  M. Hollingsworth,et al.  What a fish can learn from a mouse: principles and strategies for modeling human cancer in mice. , 2009, Zebrafish.

[274]  L. Zon,et al.  Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. , 1995, Development.

[275]  W. Talbot,et al.  The EGF-CFC Protein One-Eyed Pinhead Is Essential for Nodal Signaling , 1999, Cell.

[276]  L. Zon,et al.  Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish , 2011, Development.

[277]  Shuo Lin,et al.  TALEN-mediated precise genome modification by homologous recombination in zebrafish , 2013, Nature Methods.

[278]  M. Goldsmith,et al.  A chemical screen to identify novel inhibitors of fin regeneration in zebrafish. , 2010, Zebrafish.

[279]  L. Harmon,et al.  Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes , 2009, BMC Evolutionary Biology.

[280]  A. Pérez-Escudero,et al.  idTracker: tracking individuals in a group by automatic identification of unmarked animals , 2014, Nature Methods.

[281]  L. Zon,et al.  Heat shock-inducible Cre/Lox approaches to induce diverse types of tumors and hyperplasia in transgenic zebrafish , 2007, Proceedings of the National Academy of Sciences.

[282]  M. A. Masino,et al.  Fictive swimming motor patterns in wild type and mutant larval zebrafish. , 2005, Journal of neurophysiology.

[283]  Kristen E. Severi,et al.  Control of visually guided behavior by distinct populations of spinal projection neurons , 2008, Nature Neuroscience.

[284]  R. Yuste,et al.  On the function of dendritic spines. , 2001, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[285]  J. Summerton,et al.  Morpholino antisense oligomers: design, preparation, and properties. , 1997, Antisense & nucleic acid drug development.

[286]  Jin-Soo Kim,et al.  Preassembled zinc-finger arrays for rapid construction of ZFNs , 2011 .

[287]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[288]  E. E. LeClair,et al.  Development and Regeneration of the Zebrafish Maxillary Barbel: A Novel Study System for Vertebrate Tissue Growth and Repair , 2010, PloS one.

[289]  R. Friedrich,et al.  Chondroitin Fragments Are Odorants that Trigger Fear Behavior in Fish , 2012, Current Biology.

[290]  Tomomi Sato,et al.  Transgenic technology for visualization and manipulation of the neural circuits controlling behavior in zebrafish , 2008, Development, growth & differentiation.

[291]  Fyodor D Urnov,et al.  Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases , 2007, Proceedings of the National Academy of Sciences.

[292]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[293]  Noam Miller,et al.  Quantification of shoaling behaviour in zebrafish (Danio rerio) , 2007, Behavioural Brain Research.

[294]  David S. Koos,et al.  Deep and fast live imaging with two-photon scanned light-sheet microscopy , 2011, Nature Methods.

[295]  J. Krause,et al.  Inter and intra-population variation in shoaling and boldness in the zebrafish (Danio rerio) , 2003, Naturwissenschaften.

[296]  Y. Lam,et al.  Imaging membrane potential with voltage-sensitive dyes. , 2000, The Biological bulletin.

[297]  Erin L. Doyle,et al.  Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting , 2011, Nucleic acids research.

[298]  C. Lien,et al.  Gene Expression Analysis of Zebrafish Heart Regeneration , 2006, PLoS biology.

[299]  S. Ha,et al.  Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases , 2014, Genome research.

[300]  Valentina Emiliani,et al.  Reshaping the optical dimension in optogenetics , 2012, Current Opinion in Neurobiology.

[301]  R. Friedrich,et al.  Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging , 1997, Neuron.

[302]  J. Keith Joung,et al.  Targeted gene disruption in somatic zebrafish cells using engineered TALENs , 2011, Nature Biotechnology.

[303]  J. Eisen,et al.  The spt-1 mutation alters segmental arrangement and axonal development of identified neurons in the spinal cord of the embryonic zebrafish , 1991, Neuron.

[304]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[305]  J S Kauer,et al.  Salamander olfactory bulb neuronal activity observed by video rate, voltage-sensitive dye imaging. II. Spatial and temporal properties of responses evoked by electric stimulation. , 1995, Journal of neurophysiology.

[306]  Robert Gerlai,et al.  Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery , 2015, Front. Behav. Neurosci..

[307]  George M. Church,et al.  Multiplex and homologous recombination–mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 , 2013, Nature Biotechnology.

[308]  A. Fine,et al.  Olfactory conditioning in the zebrafish (Danio rerio) , 2009, Behavioural Brain Research.

[309]  J. Mumm,et al.  The nitroreductase system of inducible targeted ablation facilitates cell-specific regenerative studies in zebrafish. , 2013, Methods.

[310]  John E. Dowling,et al.  Behavioral screening for cocaine sensitivity in mutagenized zebrafish , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[311]  R. Colwill,et al.  High-throughput analysis of behavior in zebrafish larvae: effects of feeding. , 2014, Zebrafish.