Multifaceted SlyD from Helicobacter pylori: implication in [NiFe] hydrogenase maturation

[1]  F. Schmid,et al.  Cooperation of the prolyl isomerase and chaperone activities of the protein folding catalyst SlyD. , 2011, Journal of molecular biology.

[2]  D. Zamble,et al.  The Escherichia coli metal‐binding chaperone SlyD interacts with the large subunit of [NiFe]‐hydrogenase 3 , 2011, FEBS letters.

[3]  H. Tidow,et al.  Crystal structure determination and functional characterization of the metallochaperone SlyD from Thermus thermophilus. , 2010, Journal of molecular biology.

[4]  C. Giancola,et al.  The interaction of the Escherichia coli protein SlyD with nickel ions illuminates the mechanism of regulation of its peptidyl‐prolyl isomerase activity , 2009, The FEBS journal.

[5]  Hongzhe Sun,et al.  Structure of a nickel chaperone, HypA, from Helicobacter pylori reveals two distinct metal binding sites. , 2009, Journal of the American Chemical Society.

[6]  F. Schmid,et al.  NMR solution structure of SlyD from Escherichia coli: spatial separation of prolyl isomerase and chaperone function. , 2009, Journal of molecular biology.

[7]  P. Chivers,et al.  An Intact Urease Assembly Pathway Is Required To Compete with NikR for Nickel Ions in Helicobacter pylori , 2009, Journal of bacteriology.

[8]  A. Labigne,et al.  In Vivo Interactome of Helicobacter pylori Urease Revealed by Tandem Affinity Purification*S , 2008, Molecular & Cellular Proteomics.

[9]  Hongzhe Sun,et al.  Binding of Ni2+ to a histidine- and glutamine-rich protein, Hpn-like , 2008, JBIC Journal of Biological Inorganic Chemistry.

[10]  Marie C. M. Lin,et al.  A Histidine-rich and Cysteine-rich Metal-binding Domain at the C Terminus of Heat Shock Protein A from Helicobacter pylori , 2008, Journal of Biological Chemistry.

[11]  G. W. Vuister,et al.  Structural diversity in twin-arginine signal peptide-binding proteins , 2007, Proceedings of the National Academy of Sciences.

[12]  M. R. Leach,et al.  The Peptidyl-Prolyl Isomerase Activity of SlyD Is Not Required for Maturation of Escherichia coli Hydrogenase , 2007, Journal of bacteriology.

[13]  M. R. Leach,et al.  The Role of Complex Formation between the Escherichia coli Hydrogenase Accessory Factors HypB and SlyD* , 2007, Journal of Biological Chemistry.

[14]  F. Schmid,et al.  Insertion of a chaperone domain converts FKBP12 into a powerful catalyst of protein folding. , 2007, Journal of molecular biology.

[15]  T. Brüser,et al.  DnaK Plays a Pivotal Role in Tat Targeting of CueO and Functions beside SlyD as a General Tat Signal Binding Chaperone* , 2007, Journal of Biological Chemistry.

[16]  Hongzhe Sun,et al.  Bioinorganic chemistry of bismuth and antimony: target sites of metallodrugs. , 2007, Accounts of chemical research.

[17]  Qing‐Yu He,et al.  Thermodynamic and kinetic aspects of metal binding to the histidine-rich protein, Hpn. , 2006, Journal of the American Chemical Society.

[18]  E. Kuipers,et al.  Pathogenesis of Helicobacter pylori Infection , 2006, Clinical Microbiology Reviews.

[19]  F. Schmid,et al.  SlyD proteins from different species exhibit high prolyl isomerase and chaperone activities. , 2006, Biochemistry.

[20]  Randy Schekman,et al.  Protein Translocation Across Biological Membranes , 2005, Science.

[21]  H. Schugar,et al.  Structural and spectroscopic features of mono- and binuclear nickel(II) complexes with tetradentate N(amine)2S(thiolate)2 ligation. , 2005, Inorganic chemistry.

[22]  A. Emili,et al.  A Role for SlyD in the Escherichia coli Hydrogenase Biosynthetic Pathway* , 2005, Journal of Biological Chemistry.

[23]  Zhaohui Xu,et al.  The crystal structure of ribosomal chaperone trigger factor from Vibrio cholerae. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[25]  F. Saul,et al.  Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. , 2004, Journal of molecular biology.

[26]  R. Maier,et al.  Dependence of Helicobacter pylori Urease Activity on the Nickel-Sequestering Ability of the UreE Accessory Protein , 2003, Journal of bacteriology.

[27]  F. Sargent,et al.  Assembly of Tat‐dependent [NiFe] hydrogenases: identification of precursor‐binding accessory proteins , 2003, FEBS letters.

[28]  K. Nagata,et al.  Three-dimensional solution structure of an archaeal FKBP with a dual function of peptidyl prolyl cis-trans isomerase and chaperone-like activities. , 2003, Journal of molecular biology.

[29]  R. Maier,et al.  Characterization of Helicobacter pylori Nickel Metabolism Accessory Proteins Needed for Maturation of both Urease and Hydrogenase , 2003, Journal of bacteriology.

[30]  D. Mckay,et al.  Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. , 2002, Structure.

[31]  Torsten Herrmann,et al.  Protein NMR structure determination with automated NOE assignment using the new software CANDID and the torsion angle dynamics algorithm DYANA. , 2002, Journal of molecular biology.

[32]  R. Maier,et al.  Requirement of nickel metabolism proteins HypA and HypB for full activity of both hydrogenase and urease in Helicobacter pylori , 2001, Molecular microbiology.

[33]  R. Sauer,et al.  Regulation of High Affinity Nickel Uptake in Bacteria , 2000, The Journal of Biological Chemistry.

[34]  Liisa Holm,et al.  DaliLite workbench for protein structure comparison , 2000, Bioinform..

[35]  M. Hohenegger,et al.  Metal-dependent nucleotide binding to the Escherichia coli rotamase SlyD. , 1999, The Biochemical journal.

[36]  Gunnar von Heijne,et al.  Competition between Sec‐ and TAT‐dependent protein translocation in Escherichia coli , 1999, The EMBO journal.

[37]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[38]  K. Young,et al.  Mutational analysis of slyD, an Escherichia coli gene encoding a protein of the FKBP immunophilin family , 1997, Molecular microbiology.

[39]  A. Plückthun,et al.  The Escherichia coli SlyD Is a Metal Ion-regulated Peptidyl-prolyl cis/trans-Isomerase* , 1997, The Journal of Biological Chemistry.

[40]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[41]  F. Moshiri,et al.  Hydrogen uptake hydrogenase in Helicobacter pylori. , 1996, FEMS microbiology letters.

[42]  S. Grzesiek,et al.  The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase , 1996, Nature Structural Biology.

[43]  J. Kay Structure-function relationships in the FK506-binding protein (FKBP) family of peptidylprolyl cis-trans isomerases. , 1996, The Biochemical journal.

[44]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[45]  L. Kay,et al.  Correlation between dynamics and high affinity binding in an SH2 domain interaction. , 1996, Biochemistry.

[46]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[47]  Peter A. Kollman,et al.  AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules , 1995 .

[48]  A. Plückthun,et al.  An Escherichia coli protein consisting of a domain homologous to FK506-binding proteins (FKBP) and a new metal binding motif. , 1994, The Journal of biological chemistry.

[49]  R F Standaert,et al.  Atomic structure of FKBP-FK506, an immunophilin-immunosuppressant complex , 1991, Science.

[50]  P. V. von Hippel,et al.  Calculation of protein extinction coefficients from amino acid sequence data. , 1989, Analytical biochemistry.

[51]  Berkeley California Disclaimer,et al.  University of California , 1886, The American journal of dental science.

[52]  Qing‐Yu He,et al.  Expression and characterization of a histidine-rich protein, Hpn: potential for Ni2+ storage in Helicobacter pylori. , 2006, The Biochemical journal.

[53]  S. Hazell,et al.  Helicobacter Pylori: Physiology and Genetics , 2001 .

[54]  M. Saraste,et al.  FEBS Lett , 2000 .

[55]  R. Dalbey,et al.  Protein translocation into and across the bacterial plasma membrane and the plant thylakoid membrane. , 1999, Trends in biochemical sciences.

[56]  D. Graham,et al.  Characterization of the Helicobacter pylori urease and purification of its subunits. , 1991, Microbial pathogenesis.

[57]  Stuart A. Rice,et al.  Inorganic Electronic Spectroscopy , 1968 .