Chaos in the fractionally damped broadband piezoelectric energy generator

Piezoelectric materials play a significant role in harvesting ambient vibration energy. Due to their inherent characteristics and electromechanical interaction, the system damping for piezoelectric energy harvesting can be adequately characterized by fractional calculus. This paper introduces the fractional model for magnetically coupling broadband energy harvesters under low-frequency excitation and investigates their nonlinear dynamic characteristics. The effects of fractional-order damping, excitation amplitude, and frequency on dynamic behaviors are proposed using the phase trajectory, power spectrum, Poincare map, and bifurcation diagram. The numerical analysis shows that the fractionally damped energy harvesting system exhibits chaos, periodic motion, chaos and periodic motion in turn when the fractional order changes from 0.2 to 1.5. The period doubling route to chaos and the inverse period doubling route from chaos to periodic motion can be clearly observed. It is also demonstrated numerically and experimentally that the magnetically coupling piezoelectric energy harvester possesses the usable frequency bandwidth over a wide range of low-frequency excitation. Both high-energy chaotic attractors and large-amplitude periodic response with inter-well oscillators dominate these broadband energy harvesting.

[1]  Gary W. Bohannan,et al.  Damping and electromechanical energy losses in the piezoelectric polymer PVDF , 2004 .

[2]  T. Hartley,et al.  A Frequency-Domain Approach to Optimal Fractional-Order Damping , 2004 .

[3]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[4]  Jens Twiefel,et al.  Survey on broadband techniques for vibration energy harvesting , 2013 .

[5]  Mohammed F. Daqaq,et al.  Energy harvesting in the super-harmonic frequency region of a twin-well oscillator , 2012 .

[6]  G. Prasad,et al.  Piezoelectric relaxation in polymer and ferroelectric composites , 1993 .

[7]  Jerome P. Lynch,et al.  Real-time structural damage detection using wireless sensing and monitoring system , 2008 .

[8]  Junyi Cao,et al.  Nonlinear Dynamic Analysis of a Cracked Rotor-Bearing System With Fractional Order Damping , 2011 .

[9]  Yuantai Hu,et al.  A piezoelectric power harvester with adjustable frequency through axial preloads , 2007 .

[10]  Jerome P. Lynch,et al.  A summary review of wireless sensors and sensor networks for structural health monitoring , 2006 .

[11]  Peter Woias,et al.  A smart and self-sufficient frequency tunable vibration energy harvester , 2011 .

[12]  Thiago Seuaciuc-Osório,et al.  Investigation of Power Harvesting via Parametric Excitations , 2009 .

[13]  Y. Hori,et al.  The Time-Scaled Trapezoidal Integration Rule for Discrete Fractional Order Controllers , 2004 .

[14]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[15]  J. A. Tenreiro Machado,et al.  Fractional derivatives: Probability interpretation and frequency response of rational approximations , 2009 .

[16]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[17]  S. Beard,et al.  An Active Diagnostic System for Structural Health Monitoring of Rocket Engines , 2006 .

[18]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[19]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[20]  Nizar Lajnef,et al.  Passive temperature compensation in piezoelectric vibrators using shape memory alloy–induced axial loading , 2012 .

[21]  Joseph L. Rose,et al.  Active health monitoring of an aircraft wing with embedded piezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring , 2007 .

[22]  A. C. Galucio,et al.  A Fractional Derivative Viscoelastic Model for Hybrid Active-Passive Damping Treatments in Time Domain - Application to Sandwich Beams , 2005 .

[23]  K. Moore,et al.  Discretization schemes for fractional-order differentiators and integrators , 2002 .

[24]  M. Shitikova,et al.  Ray Method for Solving Dynamic Problems Connected With Propagation of Wave Surfaces of Strong and Weak Discontinuities , 1995 .

[25]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[26]  M. Shitikova,et al.  Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results , 2010 .

[27]  S. M. Shahruz,et al.  Increasing the Efficiency of Energy Scavengers by Magnets , 2008 .

[28]  Steve G Burrow,et al.  Vibration energy harvesters with non-linear compliance , 2008, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[29]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .

[30]  J. A. Tenreiro Machado,et al.  Fractional Dynamics: A Statistical Perspective , 2007 .

[31]  F. Chang,et al.  Detection and monitoring of hidden fatigue crack growth using a built-in piezoelectric sensor/actuator network: I. Diagnostics , 2004 .

[32]  D. Inman,et al.  Frequency Self-tuning Scheme for Broadband Vibration Energy Harvesting , 2010 .

[33]  Alper Erturk,et al.  Enhanced broadband piezoelectric energy harvesting using rotatable magnets , 2013 .

[34]  Maurizio Valle,et al.  Identification and validation of a fractional order dynamic model for a piezoelectric tactile sensor , 2010, 2010 11th IEEE International Workshop on Advanced Motion Control (AMC).

[35]  Nuno M. M. Maia,et al.  On a General Model for Damping , 1998 .

[36]  D. Guyomar,et al.  Fractional derivative operators for modeling piezoceramic polarization behaviors under dynamic mechanical stress excitation , 2013 .

[37]  Karen Margaret Holford,et al.  Energy Harvesting for Aerospace Structural Health Monitoring Systems , 2012 .

[38]  M. Márquez,et al.  Low-frequency ac electro-flow-focusing microfluidic emulsification , 2010 .

[39]  L. Gammaitoni,et al.  Nonlinear energy harvesting. , 2008, Physical review letters.

[40]  D. Inman,et al.  Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling , 2011 .