Data Augmentation for Learning Bilingual Word Embeddings with Unsupervised Machine Translation

Unsupervised bilingual word embedding (BWE) methods learn a linear transformation matrix that maps two monolingual embedding spaces that are separately trained with monolingual corpora. This method assumes that the two embedding spaces are structurally similar, which does not necessarily hold true in general. In this paper, we propose using a pseudo-parallel corpus generated by an unsupervised machine translation model to facilitate structural similarity of the two embedding spaces and improve the quality of BWEs in the mapping method. We show that our approach substantially outperforms baselines and other alternative approaches given the same amount of data, and, through detailed analysis, we argue that data augmentation with the pseudo data from unsupervised machine translation is especially effective for BWEs because (1) the pseudo data makes the source and target corpora (partially) parallel; (2) the pseudo data reflects some nature of the original language that helps learning similar embedding spaces between the source and target languages.

[1]  Anders Søgaard,et al.  On the Limitations of Unsupervised Bilingual Dictionary Induction , 2018, ACL.

[2]  Timothy Dozat,et al.  Deep Biaffine Attention for Neural Dependency Parsing , 2016, ICLR.

[3]  Christopher Potts,et al.  A large annotated corpus for learning natural language inference , 2015, EMNLP.

[4]  Philipp Koehn,et al.  Moses: Open Source Toolkit for Statistical Machine Translation , 2007, ACL.

[5]  Andy Way,et al.  Lost in Translation: Loss and Decay of Linguistic Richness in Machine Translation , 2019, MTSummit.

[6]  Holger Schwenk,et al.  A Corpus for Multilingual Document Classification in Eight Languages , 2018, LREC.

[7]  Christopher D. Manning,et al.  Bilingual Word Representations with Monolingual Quality in Mind , 2015, VS@HLT-NAACL.

[8]  Noah A. Smith,et al.  A Simple, Fast, and Effective Reparameterization of IBM Model 2 , 2013, NAACL.

[9]  Eneko Agirre,et al.  Bilingual Lexicon Induction through Unsupervised Machine Translation , 2019, ACL.

[10]  Elia Bruni,et al.  Multimodal Distributional Semantics , 2014, J. Artif. Intell. Res..

[11]  Eneko Agirre,et al.  An Effective Approach to Unsupervised Machine Translation , 2019, ACL.

[12]  Goran Glavas,et al.  How to (Properly) Evaluate Cross-Lingual Word Embeddings: On Strong Baselines, Comparative Analyses, and Some Misconceptions , 2019, ACL.

[13]  Guillaume Lample,et al.  Unsupervised Machine Translation Using Monolingual Corpora Only , 2017, ICLR.

[14]  Felix Hill,et al.  SimVerb-3500: A Large-Scale Evaluation Set of Verb Similarity , 2016, EMNLP.

[15]  Hiroshi Kanayama,et al.  Learning Crosslingual Word Embeddings without Bilingual Corpora , 2016, EMNLP.

[16]  Yoshua Bengio,et al.  BilBOWA: Fast Bilingual Distributed Representations without Word Alignments , 2014, ICML.

[17]  Benjamin Marie,et al.  Unsupervised Joint Training of Bilingual Word Embeddings , 2019, ACL.

[18]  Eneko Agirre,et al.  A robust self-learning method for fully unsupervised cross-lingual mappings of word embeddings , 2018, ACL.

[19]  Eneko Agirre,et al.  Unsupervised Neural Machine Translation , 2017, ICLR.

[20]  Samuel R. Bowman,et al.  A Gold Standard Dependency Corpus for English , 2014, LREC.

[21]  Guillaume Lample,et al.  Word Translation Without Parallel Data , 2017, ICLR.

[22]  Philipp Koehn,et al.  Scalable Modified Kneser-Ney Language Model Estimation , 2013, ACL.

[23]  Quoc V. Le,et al.  Exploiting Similarities among Languages for Machine Translation , 2013, ArXiv.

[24]  Guillaume Lample,et al.  XNLI: Evaluating Cross-lingual Sentence Representations , 2018, EMNLP.

[25]  Samuel R. Bowman,et al.  A Broad-Coverage Challenge Corpus for Sentence Understanding through Inference , 2017, NAACL.

[26]  Guillaume Lample,et al.  Phrase-Based & Neural Unsupervised Machine Translation , 2018, EMNLP.

[27]  Marie-Francine Moens,et al.  Bilingual Distributed Word Representations from Document-Aligned Comparable Data , 2015, J. Artif. Intell. Res..

[28]  Graham Neubig,et al.  Bilingual Lexicon Induction with Semi-supervision in Non-Isometric Embedding Spaces , 2019, ACL.

[29]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.