Entropy flux-splittings for hyperbolic conservation laws part I: General framework

A general framework is proposed for the derivation and analysis of flux-splittings and the corresponding flux-splitting schemes for systems of conservation laws endowed with a strictly convex entropy. The approach leads to several new properties of the existing flux-splittings and to a method for the construction of entropy flux-splittings for general situations. A large family of genuine entropy flux-splittings is derived for several significant examples: the scalar conservation laws, the p-system, and the Euler system of isentropic gas dynamics. In particular, for the isentropic Euler system, we obtain a family of splittings that satisfy the entropy inequality associated with the mechanical energy. For this system, it is proved that there exists a unique genuine entropy flux-splitting that satisfies all of the entropy inequalities, which is also the unique diagonalizable splitting. This splitting can be also derived by the so-called kinetic formulation. Simple and useful difference schemes are derived from the flux-splittings for hyperbolic systems. Such entropy flux-splitting schemes are shown to satisfy a discrete cell entropy inequality. For the diagonalizable splitting schemes, an a priori L∞ estimate is provided by applying the principle of bounded invariant regions. The convergence of entropy flux-splitting schemes is proved for the 2 × 2 systems of conservation laws and the isentropic Euler system. ©1995 John Wiley & Sons, Inc.

[1]  S. Osher Riemann Solvers, the Entropy Condition, and Difference , 1984 .

[2]  Philippe G. LeFloch,et al.  Convergence of finite difference schemes for conservation laws in several space dimensions , 1991 .

[3]  Anders Szepessy,et al.  Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .

[4]  Andrew J. Majda,et al.  Wave Motion: Theory, Modelling, and Computation , 1987 .

[5]  Semi-discrete approximations to nonlinear systems of conservation laws; consistency and L(infinity)-stability imply convergence , 1988 .

[6]  Jean-Pierre Croisille,et al.  Kinetic symmetrizations and pressure laws for the Euler equations , 1982 .

[7]  Tai-Ping Liu,et al.  Existence theory for nonlinear hyperbolic systems in nonconservative form , 1993 .

[8]  Meng-Sing Liou,et al.  Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry , 1990 .

[9]  P. Lax Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .

[10]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[11]  Y. Brenier Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .

[12]  Eitan Tadmor,et al.  The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .

[13]  R. H. Sanders,et al.  The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .

[14]  J. Steger,et al.  Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .

[15]  Philippe G. LeFloch,et al.  An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .

[16]  Claes Johnson,et al.  On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .

[17]  F. Murat,et al.  Compacité par compensation , 1978 .

[18]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[19]  Bernardo Cockburn,et al.  An error estimate for finite volume methods for multidimensional conservation laws , 1994 .

[20]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[21]  B. Leer,et al.  Flux-vector splitting for the Euler equations , 1997 .

[22]  Convergence of second-order schemes for isentropic gas dynamics , 1993 .

[23]  Convexity in Hyperbolic Problems. Application to a Discontinuous Galerkin Method for the Resolution of the Polydimensional Euler Equations , 1989 .

[24]  Meng-Sing Liou,et al.  Field by field hybrid upwind splitting methods , 1993 .

[25]  S. Osher Riemann Solvers, the Entropy Condition and High Resolution Difference Approximations, , 1984 .

[26]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[27]  Bram van Leer,et al.  On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .

[28]  D. Hoff Invariant regions for systems of conservation laws , 1985 .

[29]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[30]  S. Osher,et al.  One-sided difference approximations for nonlinear conservation laws , 1981 .

[31]  R. J. Diperna Compensated compactness and general systems of conservation laws , 1985 .

[32]  Tai-Ping Liu The Riemann problem for general 2×2 conservation laws , 1974 .

[33]  B. Perthame,et al.  A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .

[34]  S. Osher,et al.  On the convergence of difference approximations to scalar conservation laws , 1988 .

[35]  Bernardo Cockburn,et al.  Convergence of the finite volume method for multidimensional conservation laws , 1995 .

[36]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[37]  B. Perthame,et al.  Boltzmann type schemes for gas dynamics and the entropy property , 1990 .

[38]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[39]  Rolf D. Reitz,et al.  One-dimensional compressible gas dynamics calculations using the Boltzmann equation , 1981 .

[40]  Luc Tartar,et al.  The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .

[41]  S. Osher,et al.  Numerical viscosity and the entropy condition , 1979 .

[42]  Richard Courant,et al.  Supersonic Flow And Shock Waves , 1948 .

[43]  D. Pullin,et al.  Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .

[44]  Frédéric Coquel,et al.  Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .

[45]  Marcel Vinokur,et al.  Generalized Flux-Vector splitting and Roe average for an equilibrium real gas , 1990 .

[46]  Eitan Tadmor,et al.  Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .

[47]  Gui-Qiang G. Chen,et al.  Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .

[48]  R. J. DiPerna Convergence of approximate solutions to conservation laws , 1983 .

[49]  Yann Brenier,et al.  Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .

[50]  Constantine M. Dafermos,et al.  Hyperbolic Systems of Conservation Laws , 1983 .

[51]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[52]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[53]  Chi-Wang Shu,et al.  A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting , 1992 .

[54]  S. M. Deshpande,et al.  A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .

[55]  J. Glimm Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .