Entropy flux-splittings for hyperbolic conservation laws part I: General framework
暂无分享,去创建一个
[1] S. Osher. Riemann Solvers, the Entropy Condition, and Difference , 1984 .
[2] Philippe G. LeFloch,et al. Convergence of finite difference schemes for conservation laws in several space dimensions , 1991 .
[3] Anders Szepessy,et al. Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions , 1989 .
[4] Andrew J. Majda,et al. Wave Motion: Theory, Modelling, and Computation , 1987 .
[6] Jean-Pierre Croisille,et al. Kinetic symmetrizations and pressure laws for the Euler equations , 1982 .
[7] Tai-Ping Liu,et al. Existence theory for nonlinear hyperbolic systems in nonconservative form , 1993 .
[8] Meng-Sing Liou,et al. Inviscid flux-splitting algorithms for real gases with non-equilibrium chemistry , 1990 .
[9] P. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves , 1987 .
[10] B. Perthame,et al. Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .
[11] Y. Brenier. Résolution d'équations d'évolution quasilinéaires en dimension N d'espace à l'aide d'équations linéaires en dimension N + 1 , 1983 .
[12] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[13] R. H. Sanders,et al. The possible relation of the 3-kiloparsec arm to explosions in the galactic nucleus , 1974 .
[14] J. Steger,et al. Flux vector splitting of the inviscid gasdynamic equations with application to finite-difference methods , 1981 .
[15] Philippe G. LeFloch,et al. An entropy satisfying MUSCL scheme for systems of conservation laws , 1996 .
[16] Claes Johnson,et al. On the convergence of a finite element method for a nonlinear hyperbolic conservation law , 1987 .
[17] F. Murat,et al. Compacité par compensation , 1978 .
[18] R. J. Diperna,et al. Convergence of the viscosity method for isentropic gas dynamics , 1983 .
[19] Bernardo Cockburn,et al. An error estimate for finite volume methods for multidimensional conservation laws , 1994 .
[20] P. Lax. Hyperbolic systems of conservation laws II , 1957 .
[21] B. Leer,et al. Flux-vector splitting for the Euler equations , 1997 .
[22] Convergence of second-order schemes for isentropic gas dynamics , 1993 .
[24] Meng-Sing Liou,et al. Field by field hybrid upwind splitting methods , 1993 .
[25] S. Osher. Riemann Solvers, the Entropy Condition and High Resolution Difference Approximations, , 1984 .
[26] S. Osher,et al. Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .
[27] Bram van Leer,et al. On the Relation Between the Upwind-Differencing Schemes of Godunov, Engquist–Osher and Roe , 1984 .
[28] D. Hoff. Invariant regions for systems of conservation laws , 1985 .
[29] Peizhu Luo,et al. CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .
[30] S. Osher,et al. One-sided difference approximations for nonlinear conservation laws , 1981 .
[31] R. J. Diperna. Compensated compactness and general systems of conservation laws , 1985 .
[32] Tai-Ping Liu. The Riemann problem for general 2×2 conservation laws , 1974 .
[33] B. Perthame,et al. A kinetic formulation of multidimensional scalar conservation laws and related equations , 1994 .
[34] S. Osher,et al. On the convergence of difference approximations to scalar conservation laws , 1988 .
[35] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[36] B. Perthame. Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .
[37] B. Perthame,et al. Boltzmann type schemes for gas dynamics and the entropy property , 1990 .
[38] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws , 1990 .
[39] Rolf D. Reitz,et al. One-dimensional compressible gas dynamics calculations using the Boltzmann equation , 1981 .
[40] Luc Tartar,et al. The Compensated Compactness Method Applied to Systems of Conservation Laws , 1983 .
[41] S. Osher,et al. Numerical viscosity and the entropy condition , 1979 .
[42] Richard Courant,et al. Supersonic Flow And Shock Waves , 1948 .
[43] D. Pullin,et al. Direct simulation methods for compressible inviscid ideal-gas flow , 1980 .
[44] Frédéric Coquel,et al. Convergence of finite difference schemes for conservation laws in several space dimensions: a general theory , 1993 .
[45] Marcel Vinokur,et al. Generalized Flux-Vector splitting and Roe average for an equilibrium real gas , 1990 .
[46] Eitan Tadmor,et al. Numerical Viscosity and the Entropy Condition for Conservative Difference Schemes , 1984 .
[47] Gui-Qiang G. Chen,et al. Spectral Viscosity Approximations to Multidimensional Scalar Conservation Laws , 1993 .
[48] R. J. DiPerna. Convergence of approximate solutions to conservation laws , 1983 .
[49] Yann Brenier,et al. Averaged Multivalued Solutions for Scalar Conservation Laws , 1984 .
[50] Constantine M. Dafermos,et al. Hyperbolic Systems of Conservation Laws , 1983 .
[51] P. Lax,et al. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .
[52] J. Smoller. Shock Waves and Reaction-Diffusion Equations , 1983 .
[53] Chi-Wang Shu,et al. A numerical method for systems of conservation laws of mixed type admitting hyperbolic flux splitting , 1992 .
[54] S. M. Deshpande,et al. A second-order accurate kinetic-theory-based method for inviscid compressible flows , 1986 .
[55] J. Glimm. Solutions in the large for nonlinear hyperbolic systems of equations , 1965 .