The explicitly correlated same number of optimized parameters (SNOOP-F12) scheme for calculating intermolecular interaction energies.

We augment the recently introduced same number of optimized parameters (SNOOP) scheme [K. Kristensen et al., J. Chem. Phys. 142, 114116 (2015)] for calculating interaction energies of molecular dimers with an F12 correction and generalize the method to enable the determination of interaction energies of general molecular clusters. The SNOOP, uncorrected (UC), and counterpoise (CP) schemes with/without an F12 correction are compared for the S22 test set of Jurečka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]-which consists of 22 molecular dimers of biological importance-and for water and methane molecular clusters. The calculations have been performed using the Resolution of the Identity second-order Møller-Plesset perturbation theory method. We conclude from the results that the SNOOP scheme generally yields interaction energies closer to the complete basis set limit value than the UC and CP approaches, regardless of whether the F12 correction is applied or not. Specifically, using the SNOOP scheme with an F12 correction yields the computationally most efficient way of achieving accurate results at low basis set levels. These conclusions hold both for molecular dimers and more general molecular clusters.

[1]  Martin W. Feyereisen,et al.  Use of approximate integrals in ab initio theory. An application in MP2 energy calculations , 1993 .

[2]  Trygve Helgaker,et al.  Basis-set convergence of correlated calculations on water , 1997 .

[3]  Werner Kutzelnigg,et al.  r12-Dependent terms in the wave function as closed sums of partial wave amplitudes for large l , 1985 .

[4]  F. B. van Duijneveldt,et al.  Weakly Bonded Systems , 2007 .

[5]  Robert Moszynski,et al.  Perturbation Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes , 1994 .

[6]  Hans-Joachim Werner,et al.  Systematically convergent basis sets for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar. , 2008, The Journal of chemical physics.

[7]  John R. Sabin,et al.  On some approximations in applications of Xα theory , 1979 .

[8]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated coupled cluster wave functions and a dispersion-weighted MP2 method. , 2009, The journal of physical chemistry. A.

[9]  Edward F. Valeev Improving on the resolution of the identity in linear R12 ab initio theories , 2004 .

[10]  Trygve Helgaker,et al.  Basis set convergence of the interaction energy of hydrogen-bonded complexes , 1999 .

[11]  P. Claverie,et al.  Perturbative ab initio calculations of intermolecular energies. I. Method , 1974 .

[12]  Lori A Burns,et al.  Comparing Counterpoise-Corrected, Uncorrected, and Averaged Binding Energies for Benchmarking Noncovalent Interactions. , 2014, Journal of chemical theory and computation.

[13]  J. Cullen An examination of the effects of basis set and charge transfer in hydrogen-bonded dimers with a constrained Hartree–Fock method , 1991 .

[14]  C. Van Alsenoy,et al.  Ab initio calculations on large molecules: The multiplicative integral approximation , 1988 .

[15]  Seiichiro Ten-no,et al.  Explicitly correlated second order perturbation theory: introduction of a rational generator and numerical quadratures. , 2004, The Journal of chemical physics.

[16]  J. Noga,et al.  Second-order BSSE-free perturbation theory: intermolecular interactions within supermolecular approach , 1991 .

[17]  Seiichiro Ten-no,et al.  Explicitly correlated electronic structure theory from R12/F12 ansätze , 2012 .

[18]  Luca Frediani,et al.  The Dalton quantum chemistry program system , 2013, Wiley interdisciplinary reviews. Computational molecular science.

[19]  Joseph R. Lane,et al.  Explicit correlation and basis set superposition error: the structure and energy of carbon dioxide dimer. , 2011, The Journal of chemical physics.

[20]  Roland Lindh,et al.  The water dimer interaction energy: Convergence to the basis set limit at the correlated level , 1997 .

[21]  Frederick R. Manby,et al.  Density fitting in second-order linear-r12 Møller–Plesset perturbation theory , 2003 .

[22]  Hans-Joachim Werner,et al.  Accurate calculations of intermolecular interaction energies using explicitly correlated wave functions. , 2008, Physical chemistry chemical physics : PCCP.

[23]  David Quiñonero,et al.  Structure and binding energy of anion-pi and cation-pi complexes: a comparison of MP2, RI-MP2, DFT, and DF-DFT methods. , 2005, The journal of physical chemistry. A.

[24]  A. Galano,et al.  Counterpoise corrected interaction energies are not systematically better than uncorrected ones: comparison with CCSD(T) CBS extrapolated values , 2010 .

[25]  K. Jordan,et al.  Benchmark study of the interaction energy for an (H2O)16 cluster: quantum Monte Carlo and complete basis set limit MP2 results. , 2013, The journal of physical chemistry. A.

[26]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[27]  István Mayer,et al.  Towards a “Chemical” Hamiltonian , 1983 .

[28]  J Grant Hill,et al.  Correlation consistent basis sets for explicitly correlated wavefunctions: valence and core-valence basis sets for Li, Be, Na, and Mg. , 2010, Physical chemistry chemical physics : PCCP.

[29]  Christof Hättig,et al.  Explicitly correlated electrons in molecules. , 2012, Chemical reviews.

[30]  Steve Scheiner,et al.  Calculating the Properties of Hydrogen Bonds by ab Initio Methods , 1991 .

[31]  István Mayer,et al.  An analytical investigation into the BSSE problem , 1991 .

[32]  Edward F. Valeev,et al.  Explicitly correlated R12/F12 methods for electronic structure. , 2012, Chemical reviews.

[33]  J. V. Lenthe,et al.  State of the Art in Counterpoise Theory , 1994 .

[34]  C. S. Nash An Examination of Basis Set Superposition Error at the Correlated Level:  Illuminating the Role of the Exchange Repulsion. , 2005, Journal of chemical theory and computation.

[35]  Maciej Gutowski,et al.  Accuracy of the Boys and Bernardi function counterpoise method , 1993 .

[36]  Seiichiro Ten-no,et al.  Initiation of explicitly correlated Slater-type geminal theory , 2004 .

[37]  Werner Kutzelnigg,et al.  Rates of convergence of the partial‐wave expansions of atomic correlation energies , 1992 .

[38]  M. Gutowski,et al.  Critical evaluation of some computational approaches to the problem of basis set superposition error , 1993 .

[39]  K. Patkowski On the accuracy of explicitly correlated coupled-cluster interaction energies--have orbital results been beaten yet? , 2012, The Journal of chemical physics.

[40]  W. Kutzelnigg,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. III. Second‐order Mo/ller–Plesset (MP2‐R12) calculations on molecules of first row atoms , 1991 .

[41]  Trygve Helgaker,et al.  Basis-set convergence of the energy in molecular Hartree–Fock calculations , 1999 .

[42]  K. Patkowski Basis set converged weak interaction energies from conventional and explicitly correlated coupled-cluster approach. , 2013, The Journal of chemical physics.

[43]  Maciej Gutowski,et al.  Weak interactions between small systems. Models for studying the nature of intermolecular forces and challenging problems for ab initio calculations , 1988 .

[44]  J. Noga,et al.  On the one-particle basis set relaxation in R12 based theories , 2009 .

[45]  D. Tew,et al.  New correlation factors for explicitly correlated electronic wave functions. , 2005, The Journal of chemical physics.

[46]  L. Piela,et al.  Proper correction for the basis set superposition error in SCF calculations of intermolecular interactions , 1987 .

[47]  Edoardo Aprà,et al.  High-Level Ab Initio Electronic Structure Calculations of Water Clusters (H2O)16 and (H2O)17: A New Global Minimum for (H2O)16 , 2010 .

[48]  Frederick R Manby,et al.  General orbital invariant MP2-F12 theory. , 2007, The Journal of chemical physics.

[49]  M. Gutowski,et al.  THE BASIS SET SUPERPOSITION ERROR IN CORRELATED ELECTRONIC STRUCTURE CALCULATIONS , 1986 .

[50]  Ł M Mentel,et al.  Can the Counterpoise Correction for Basis Set Superposition Effect Be Justified? , 2014, Journal of chemical theory and computation.

[51]  F. Manby,et al.  Efficient Explicitly Correlated Coupled-Cluster Approximations , 2010 .

[52]  J. Connolly,et al.  On first‐row diatomic molecules and local density models , 1979 .

[53]  J. Sordo,,et al.  Some comments on the counterpoise correction for the basis set superposition error at the correlated level , 1993 .

[54]  S. Xantheas,et al.  An accurate and efficient computational protocol for obtaining the complete basis set limits of the binding energies of water clusters at the MP2 and CCSD(T) levels of theory: Application to (H2O)m, m = 2-6, 8, 11, 16, and 17. , 2015, The Journal of chemical physics.

[55]  Rick A. Kendall,et al.  The impact of the resolution of the identity approximate integral method on modern ab initio algorithm development , 1997 .

[56]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[57]  J. L. Whitten,et al.  Coulombic potential energy integrals and approximations , 1973 .

[58]  J. J. Dannenberg,et al.  Molecular orbital calculations of water clusters on counterpoise-corrected potential energy surfaces , 2004 .

[59]  J. Almlöf,et al.  Integral approximations for LCAO-SCF calculations , 1993 .

[60]  F. Weigend,et al.  Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations , 2002 .

[61]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[62]  H. Kjaergaard,et al.  Explicitly correlated intermolecular distances and interaction energies of hydrogen bonded complexes. , 2009, The Journal of chemical physics.

[63]  Wim Klopper,et al.  Explicitly correlated second-order Møller–Plesset methods with auxiliary basis sets , 2002 .

[64]  Christof Hättig,et al.  Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-ζ basis sets for H to Ar and QZVPP basis sets for Li to Kr , 2005 .

[65]  Manoj K. Kesharwani,et al.  Some Observations on Counterpoise Corrections for Explicitly Correlated Calculations on Noncovalent Interactions. , 2014, Journal of chemical theory and computation.

[66]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[67]  Marcus D. Hanwell,et al.  Avogadro: an advanced semantic chemical editor, visualization, and analysis platform , 2012, Journal of Cheminformatics.

[68]  A. D. McLean,et al.  Accurate calculation of the attractive interaction of two ground state helium atoms , 1973 .

[69]  J. V. Lenthe,et al.  Ab initio calculations on weakly bonded systems , 1984 .

[70]  Lori A Burns,et al.  Basis set convergence of the coupled-cluster correction, δ(MP2)(CCSD(T)): best practices for benchmarking non-covalent interactions and the attendant revision of the S22, NBC10, HBC6, and HSG databases. , 2011, The Journal of chemical physics.

[71]  J. Noga,et al.  Alternative formulation of the matrix elements in MP2‐R12 theory , 2005 .

[72]  Trygve Helgaker,et al.  Basis-set convergence in correlated calculations on Ne, N2, and H2O , 1998 .

[73]  Konrad Patkowski,et al.  Improved interaction energy benchmarks for dimers of biological relevance. , 2010, Physical chemistry chemical physics : PCCP.

[74]  A. J. Sadlej Exact perturbation treatment of the basis set superposition correction , 1991 .

[75]  Frank Jensen,et al.  The same number of optimized parameters scheme for determining intermolecular interaction energies. , 2015, The Journal of chemical physics.

[76]  Trygve Helgaker,et al.  Molecular Electronic-Structure Theory: Helgaker/Molecular Electronic-Structure Theory , 2000 .

[77]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[78]  S. Grimme,et al.  A geometrical correction for the inter- and intra-molecular basis set superposition error in Hartree-Fock and density functional theory calculations for large systems. , 2012, The Journal of chemical physics.

[79]  E. Hylleraas,et al.  Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium , 1929 .