On Multilevel Picard Numerical Approximations for High-Dimensional Nonlinear Parabolic Partial Differential Equations and High-Dimensional Nonlinear Backward Stochastic Differential Equations

Parabolic partial differential equations (PDEs) and backward stochastic differential equations (BSDEs) are key ingredients in a number of models in physics and financial engineering. In particular, parabolic PDEs and BSDEs are fundamental tools in pricing and hedging models for financial derivatives. The PDEs and BSDEs appearing in such applications are often high-dimensional and nonlinear. Since explicit solutions of such PDEs and BSDEs are typically not available, it is a very active topic of research to solve such PDEs and BSDEs approximately. In the recent article (E et al., Multilevel Picard iterations for solving smooth semilinear parabolic heat equations, arXiv:1607.03295) we proposed a family of approximation methods based on Picard approximations and multilevel Monte Carlo methods and showed under suitable regularity assumptions on the exact solution of a semilinear heat equation that the computational complexity is bounded by $$O( d \, {\varepsilon }^{-(4+\delta )})$$O(dε-(4+δ)) for any $$\delta \in (0,\infty )$$δ∈(0,∞) where d is the dimensionality of the problem and $${\varepsilon }\in (0,\infty )$$ε∈(0,∞) is the prescribed accuracy. In this paper, we test the applicability of this algorithm on a variety of 100-dimensional nonlinear PDEs that arise in physics and finance by means of numerical simulations presenting approximation accuracy against runtime. The simulation results for many of these 100-dimensional example PDEs are very satisfactory in terms of both accuracy and speed. Moreover, we also provide a review of other approximation methods for nonlinear PDEs and BSDEs from the scientific literature.

[1]  D. Talay,et al.  Stochastic simulation and Monte-Carlo methods , 2013 .

[2]  Marc L. Ross Counterparty Risk and Funding: The Four Wings of the TVA , 2013 .

[3]  P. Protter,et al.  Numberical Method for Backward Stochastic Differential Equations , 2002 .

[4]  Numérisation de documents anciens mathématiques,et al.  Mathematical modelling and numerical analysis : Modélisation mathématique et analyse numérique. , 1985 .

[5]  Christoph Burgard,et al.  Partial Differential Equation Representations of Derivatives with Bilateral Counterparty Risk and Funding Costs , 2010 .

[6]  Jin Ma,et al.  Representation theorems for backward stochastic differential equations , 2002 .

[7]  Carl Graham,et al.  Stochastic Simulation and Monte Carlo Methods: Mathematical Foundations of Stochastic Simulation , 2013 .

[8]  Yaacov Z. Bergman Option Pricing with Differential Interest Rates , 1995 .

[9]  Stylianos Perrakis,et al.  Option pricing and replication with transaction costs and dividends , 2000 .

[10]  Jie Xiong,et al.  A branching particle system approximation for a class of FBSDEs , 2016 .

[11]  Emmanuel Gobet,et al.  Generalized fractional smoothness and Lp-variation of BSDEs with non-Lipschitz terminal condition , 2011, 1103.0371.

[12]  Shige Peng,et al.  Probabilistic interpretation for systems of quasilinear parabolic partial differential equations , 1991 .

[13]  Plamen Turkedjiev,et al.  Two algorithms for the discrete time approximation of Markovian backward stochastic differential equations under local conditions , 2013, 1309.4378.

[14]  Terry Lyons,et al.  Cubature on Wiener space , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  B. Delyon,et al.  DONSKER-TYPE THEOREM FOR BSDES , 2001 .

[16]  Pratima Hebbar Branching diffusion processes in periodic media , 2019 .

[17]  H. Leland. Option Pricing and Replication with Transactions Costs , 1985 .

[18]  Anna Lisa Amadori,et al.  Nonlinear integro-differential evolution problems arising in option pricing: a viscosity solutions approach , 2003, Differential and Integral Equations.

[19]  Nadia Oudjane,et al.  Branching diffusion representation of semilinear PDEs and Monte Carlo approximation , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[20]  Céline Labart,et al.  Solving BSDE with Adaptive Control Variate , 2010, SIAM J. Numer. Anal..

[21]  Nizar Touzi,et al.  A Probabilistic Numerical Method for Fully Nonlinear Parabolic PDEs , 2009, 0905.1863.

[22]  C. Litterer,et al.  High order recombination and an application to cubature on Wiener space , 2010 .

[23]  Dan Crisan,et al.  Probabilistic methods for semilinear partial differential equations. Applications to finance , 2010 .

[24]  W. E,et al.  Multilevel Picard iterations for solving smooth semilinear parabolic heat equations , 2016, Partial Differential Equations and Applications.

[25]  Giuseppe Da Prato,et al.  Differentiability of the Feynman-Kac semigroup and a control application , 1997 .

[26]  Jia Zhuo,et al.  A monotone scheme for high-dimensional fully nonlinear PDEs , 2012, 1212.0466.

[27]  E. Tadmor A review of numerical methods for nonlinear partial differential equations , 2012 .

[28]  Christel Geiss,et al.  Simulation of BSDEs with jumps by Wiener Chaos expansion , 2015, 1502.05649.

[29]  Michael B. Giles,et al.  Multilevel Monte Carlo Path Simulation , 2008, Oper. Res..

[30]  Anton Wakolbinger,et al.  Length of Galton-Watson trees and blow-up of semilinear systems , 1998 .

[31]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[32]  M. Hutzenthaler,et al.  On a perturbation theory and on strong convergence rates for stochastic ordinary and partial differential equations with non-globally monotone coefficients , 2014, 1401.0295.

[33]  Miguel A. Herrero,et al.  Boundedness and blow up for a semilinear reaction-diffusion system , 1991 .

[34]  Robert Denk,et al.  A forward scheme for backward SDEs , 2007 .

[35]  S. Menozzi,et al.  A Forward-Backward Stochastic Algorithm For Quasi-Linear PDEs , 2006, math/0603250.

[36]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[37]  Dan Crisan,et al.  Minimal Entropy Approximations and Optimal Algorithms , 2002, Monte Carlo Methods Appl..

[38]  Peter A. Forsyth,et al.  Hedging with a correlated asset: Solution of a nonlinear pricing PDE , 2007 .

[39]  E. Bayraktar,et al.  Pricing options in incomplete equity markets via the instantaneous Sharpe ratio , 2007, math/0701650.

[40]  Cornelis W. Oosterlee,et al.  A Fourier-Cosine Method for an Efficient Computation of Solutions to BSDEs , 2013, SIAM J. Sci. Comput..

[41]  G. Pagès,et al.  A quantization algorithm for solving multidimensional discrete-time optimal stopping problems , 2003 .

[42]  V. Thomée Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics) , 2010 .

[43]  Hai-ping Shi Backward stochastic differential equations in finance , 2010 .

[44]  Peter E. Kloeden,et al.  Divergence of the multilevel Monte Carlo Euler method for nonlinear stochastic differential equations , 2011, 1105.0226.

[45]  M. Nagasawa,et al.  PROBABILISTIC TREATMENT OF THE BLOWING UP OF SOLUTIONS FOR A NONLINEAR INTEGRAL EQUATION , 1969 .

[46]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[47]  Pierre Henry-Labordere,et al.  Counterparty Risk Valuation: A Marked Branching Diffusion Approach , 2012, 1203.2369.

[48]  Erhan Bayraktar,et al.  Valuation of Mortality Risk via the Instantaneous Sharpe Ratio: Applications to Life Annuities , 2008, 0802.3250.

[49]  P. Kloeden,et al.  Strong convergence of an explicit numerical method for SDEs with nonglobally Lipschitz continuous coefficients , 2010, 1010.3756.

[50]  Emmanuel Gobet,et al.  L2-time regularity of BSDEs with irregular terminal functions , 2010 .

[51]  G. Maruyama Continuous Markov processes and stochastic equations , 1955 .

[52]  Stefan Heinrich,et al.  Monte Carlo Complexity of Global Solution of Integral Equations , 1998, J. Complex..

[53]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[54]  Christel Geiss,et al.  On approximation of a class of stochastic integrals and interpolation , 2004 .

[55]  G. Pagès,et al.  Error analysis of the optimal quantization algorithm for obstacle problems , 2003 .

[56]  Emmanuel Gobet,et al.  Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression , 2016, 1601.01186.

[57]  Dan Crisan,et al.  Solving Backward Stochastic Differential Equations Using the Cubature Method: Application to Nonlinear Pricing , 2010, SIAM J. Financial Math..

[58]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[59]  M. Giles Improved Multilevel Monte Carlo Convergence using the Milstein Scheme , 2008 .

[60]  M. Röckner,et al.  A Concise Course on Stochastic Partial Differential Equations , 2007 .

[61]  Jean-Paul Laurent,et al.  An overview of the valuation of collateralized derivative contracts , 2014 .

[62]  Steffen Dereich,et al.  Infinite-Dimensional Quadrature and Approximation of Distributions , 2009, Found. Comput. Math..

[63]  K. Elworthy,et al.  Formulae for the Derivatives of Heat Semigroups , 1994, 1911.10971.

[64]  C. Schwab,et al.  NUMERICAL SOLUTION OF PARABOLIC EQUATIONS IN HIGH DIMENSIONS , 2004 .

[65]  Stefan Heinrich,et al.  Monte Carlo Complexity of Parametric Integration , 1999, J. Complex..

[66]  Emmanuel Gobet,et al.  Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions , 2015, Math. Comput..

[67]  Stefan Heinrich,et al.  The randomized information complexity of elliptic PDE , 2006, J. Complex..

[68]  H. Soner,et al.  Second‐order backward stochastic differential equations and fully nonlinear parabolic PDEs , 2005, math/0509295.

[69]  S. Peng,et al.  Backward stochastic differential equations and quasilinear parabolic partial differential equations , 1992 .

[70]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[71]  P. Forsyth,et al.  Implicit solution of uncertain volatility/transaction cost option pricing models with discretely observed barriers , 2001 .

[72]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[73]  Xiaolu Tan,et al.  A Numerical Algorithm for a Class of BSDE Via Branching Process , 2013 .

[74]  M. Avellaneda,et al.  Pricing and hedging derivative securities in markets with uncertain volatilities , 1995 .

[75]  Pierre Henry-Labordere,et al.  Uncertain Volatility Model: A Monte-Carlo Approach , 2010 .

[76]  Arnaud Lionnet,et al.  Time discretization of FBSDE with polynomial growth drivers and reaction-diffusion PDEs , 2013, 1309.2865.

[77]  N. Touzi,et al.  On the Monte Carlo simulation of BSDEs: An improvement on the Malliavin weights , 2010 .

[78]  P. Briand,et al.  Simulation of BSDEs by Wiener Chaos Expansion , 2012, 1204.4137.

[79]  Emmanuel Gobet,et al.  Numerical simulation of BSDEs using empirical regression methods: theory and practice , 2005 .

[80]  Cornelis W. Oosterlee,et al.  Generalized beta regression models for random loss given default , 2008 .

[81]  E. Gobet,et al.  Rate of convergence of an empirical regression method for solving generalized backward stochastic differential equations , 2006 .

[82]  Dan Crisan,et al.  RUNGE-KUTTA SCHEMES FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS , 2014 .

[83]  Jean-François Chassagneux,et al.  Linear Multistep Schemes for BSDEs , 2014, SIAM J. Numer. Anal..

[84]  D. Crisan,et al.  Second order discretization of backward SDEs and simulation with the cubature method , 2014 .

[85]  P. Kloeden,et al.  Strong and weak divergence in finite time of Euler's method for stochastic differential equations with non-globally Lipschitz continuous coefficients , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[86]  D. Duffie,et al.  Recursive valuation of defaultable securities and the timing of resolution of uncertainty , 1996 .

[87]  Christian Bender,et al.  A PRIMAL–DUAL ALGORITHM FOR BSDES , 2013, 1310.3694.

[88]  H. Fujita On the blowing up of solutions fo the Cauchy problem for u_t=Δu+u^ , 1966 .

[89]  E Weinan,et al.  On full history recursive multilevel Picard approximations and numerical approximations for high-dimensional nonlinear parabolic partial differential equations and high-dimensional nonlinear backward stochastic differential equations , 2016 .

[90]  Cornelis W. Oosterlee,et al.  Numerical Fourier Method and Second-Order Taylor Scheme for Backward SDEs in Finance , 2014 .

[91]  Francesco Russo,et al.  Forward Feynman-Kac type representation for semilinear non-conservative partial differential equations , 2016, Stochastics.