Properties of Liquid Metal Coolants

Liquid metals, such as sodium (Na), lead (Pb) and lead–bismuth eutectic (Pb–Bi(e)), are considered as potential coolants for the fast spectrum nuclear reactors of the next generation. Intensive studies have been performed in different countries aiming at a better understanding of their properties needed for the design and safety analysis of nuclear installations. This article gives a brief review of the compilations and recommendations developed for the main thermophysical properties of Na, Pb, and Pb–Bi. The properties of theses coolants were measured in many laboratories, but mainly at the normal atmospheric pressure and at relatively low temperatures (except for Na). In general, the reliability of data is satisfactory, however, a large uncertainty still exists in some properties of Pb and Pb–Bi. A set of correlations for estimation of the main properties of Na, Pb, and Pb-Bi is proposed. For prognosis of the missing properties at high temperatures and pressures, a relevant equation of state (EOS) based on the proven physical models and available experimental data is suggested. The critical parameters are not well defined yet, and this hinders the EOS validation at high temperatures and pressures.

[1]  J. Ganguly,et al.  Melting of lead and zinc to 60 kbar , 1973 .

[2]  N. Gokcen The bi-pb (bismuth-lead) system , 1992 .

[3]  Y. Kurata,et al.  Experimental Investigation of Lead-Bismuth Evaporation Behavior , 2005 .

[4]  S. Ganesan,et al.  A new approach for the estimation of the critical temperature: Application to sodium , 1983 .

[5]  R. Guthrie,et al.  The physical properties of liquid metals , 1988 .

[6]  Werner Maschek,et al.  Thermophysical Properties of Lead-Bismuth Eutectic Alloy in Reactor Safety Analyses , 2006 .

[7]  Svein Stølen,et al.  Critical assessment of the enthalpy of fusion of metals used as enthalpy standards at moderate to high temperatures , 1999 .

[8]  Brian J Monaghan,et al.  Thermal conductivities of molten metals: Part 1 Pure metals , 1996 .

[9]  O. Redlich,et al.  On the thermodynamics of solutions; an equation of state; fugacities of gaseous solutions. , 1949, Chemical reviews.

[10]  Kune Y. Suh,et al.  Optimized Battery-Type Reactor Primary System Design Utilizing Lead , 2006 .

[11]  Sven Eckert,et al.  Some physical data of the near eutectic liquid lead–bismuth , 2008 .

[12]  V. Sobolev,et al.  Thermophysical properties of lead and lead–bismuth eutectic , 2007 .

[13]  A. Azad Critical temperature of the lead–bismuth eutectic (LBE) alloy , 2005 .

[14]  H. Sekimoto,et al.  CANDLE: The New Burnup Strategy , 2001 .

[15]  I. I. Kopytov,et al.  SVBR-75/100 Multipurpose Modular Low-Power Fast Reactor with Lead–Bismuth Coolant , 2004 .

[16]  Roland W. Ohse,et al.  Handbook of thermodynamic and transport properties of alkali metals , 1985 .

[17]  H. Mao,et al.  Melting of dense sodium. , 2005, Physical review letters.

[18]  N. B. Vargaftik Tables on the thermophysical properties of liquids and gases: In normal and dissociated states , 1975 .

[19]  Jae-Yong Lim,et al.  A new LFR design concept for effective TRU transmutation , 2007 .

[20]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[21]  Zha,et al.  Melting of sodium and potassium in a diamond anvil cell. , 1985, Physical review. B, Condensed matter.

[22]  G. Benamati,et al.  Thermodynamic properties and equation of state of liquid lead and lead–bismuth eutectic , 2008 .

[23]  G. Makov,et al.  High precision measurements of the temperature dependence of the sound velocity in selected liquid metals , 2008 .

[24]  Donald T. Hawkins,et al.  Selected Values of the Thermodynamic Properties of the Elements , 1973 .

[25]  F. Petiot,et al.  Physical properties of sodium: a contribution to the estimation of critical coordinates , 1984 .

[26]  W. Hofmann Lead and Lead Alloys , 1970 .

[27]  K. A. Yakimovich,et al.  Thermophysical Properties of Alkali Metals , 1971 .

[28]  H. Eslami A perturbed hard-sphere-chain equation of state for liquid metals , 2005 .

[29]  D. T. Hawkins,et al.  Selected values of the thermodynamic properties of binary alloys , 1973 .

[30]  Koji Morita,et al.  Thermodynamic properties and equations of state for fast reactor safety analysis: Part I: Analytic equation-of-state model , 1998 .

[31]  S. S. Kutateladze,et al.  Liquid-metal heat transfer media , 1959 .

[32]  Gernot Pottlacher,et al.  Measurement of thermophysical properties of lead by a submicrosecond pulse-heating method in the range 2000–5000 K , 1990 .

[33]  М КаневскийИ,et al.  Действие электрического поля на спектры поглощения молекулярных растворов. Линейный н квадратичный аффекты. , 1971 .

[34]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[35]  Olle Eriksson,et al.  Vanishing Magnetic Interaction in Ferromagnetic Thin Films , 2005 .

[36]  W. T. Hicks Evaluation of Vapor‐Pressure Data for Mercury, Lithium, Sodium, and Potassium , 1963 .

[37]  M. Martynyuk ESTIMATION OF THE CRITICAL POINT OF METALS WITH THE USE OF THE GENERALIZEDVAN DER WAALS EQUATION , 1998 .

[38]  D. Struwe,et al.  The Potential of the LFR and the ELSY Project , 2007 .

[39]  B. J. Keene,et al.  Review of data for the surface tension of pure metals , 1993 .

[40]  Yuhua Song,et al.  A Perturbed Hard-Sphere-Chain Equation of State for Normal Fluids and Polymers , 1994 .

[41]  P. Mirwald,et al.  Melting temperature of lead and sodium at high pressures , 1976 .

[42]  K. Morita,et al.  Critical parameters and equation of state for heavy liquid metals , 2007 .

[43]  R. Konings,et al.  Thermochemical data for reactor materials and fission products: The ECN database , 1990 .