Photothermal effects in ultra-precisely stabilized tunable microcavities.

We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of 500 kHz and a noise level of 1.1 × 10-13 m rms.

[1]  D. Hunger,et al.  Cavity-enhanced Raman microscopy of individual carbon nanotubes , 2015, Nature Communications.

[2]  D. Meschede,et al.  High-finesse fiber Fabry–Perot cavities: stabilization and mode matching analysis , 2015, 1508.05289.

[3]  A. Trichet,et al.  Tunable cavity coupling of the zero phonon line of a nitrogen-vacancy defect in diamond , 2015, 1506.05161.

[4]  P. Senellart,et al.  Cavity-funneled generation of indistinguishable single photons from strongly dissipative quantum emitters. , 2015, Physical review letters.

[5]  D. Hunger,et al.  A scanning cavity microscope , 2014, Nature Communications.

[6]  G. Rempe,et al.  Frequency splitting of polarization eigenmodes in microscopic Fabry–Perot cavities , 2014, 1408.4367.

[7]  R. Warburton,et al.  A small mode volume tunable microcavity: Development and characterization , 2014, 1408.1357.

[8]  D. Hunger,et al.  Scaling laws of the cavity enhancement for nitrogen-vacancy centers in diamond , 2013, 1304.0948.

[9]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[10]  E. Togan,et al.  Cavity quantum electrodynamics with charge-controlled quantum dots coupled to a fiber Fabry–Perot cavity , 2012, 1211.4515.

[11]  I. Favero,et al.  Cavity-enhanced optical detection of carbon nanotube Brownian motion , 2012, 1211.1608.

[12]  Jakob Reichel,et al.  Single ion coupled to an optical fiber cavity. , 2012, Physical review letters.

[13]  N. Flowers-Jacobs,et al.  Fiber-cavity-based optomechanical device , 2012, 1206.3558.

[14]  D. Hunger,et al.  Laser micro-fabrication of concave, low-roughness features in silica , 2011, 1109.5047.

[15]  Francesco Marin,et al.  Photothermal and thermo-refractive effects in high reflectivity mirrors at room and cryogenic temperature , 2011, 1109.4491.

[16]  Suresh Sridaran,et al.  A monolithic radiation-pressure driven, low phase noise silicon nitride opto-mechanical oscillator. , 2011, Optics express.

[17]  P. Petroff,et al.  A tunable microcavity , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[18]  Jason M. Smith,et al.  Femtoliter tunable optical cavity arrays. , 2010, Optics letters.

[19]  T. Stöferle,et al.  A scanning microcavity for in-situ control of single-molecule emission , 2010, 1005.0236.

[20]  Tilo Steinmetz,et al.  A fiber Fabry–Perot cavity with high finesse , 2010, 1005.0067.

[21]  Jun Ye,et al.  Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth. , 2010, Optics express.

[22]  Glenn S. Solomon,et al.  Coupling an epitaxial quantum dot to a fiber-based external-mirror microcavity , 2009, 0910.4658.

[23]  T. Mcrae,et al.  Thermo-optic locking of a semiconductor laser to a microcavity resonance. , 2009, Optics express.

[24]  D. Hunger,et al.  Fluctuating nanomechanical system in a high finesse optical microcavity. , 2009, Optics express.

[25]  Ivan Favero,et al.  Optical self cooling of a deformable Fabry-Perot cavity in the classical limit , 2008 .

[26]  D. Hunger,et al.  Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip , 2007, Nature.

[27]  A. Hajimiri,et al.  Characterization of a Radiation-Pressure-Driven Micromechanical Oscillator , 2006, 2006 IEEE International Frequency Control Symposium and Exposition.

[28]  E. A. Curtis,et al.  Microfabricated high-finesse optical cavity with open access and small volume , 2005, quant-ph/0506234.

[29]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[30]  K. Vahala,et al.  Loss characterization in micro-cavities using the thermal bistability effect , 2004, Digest of the LEOS Summer Topical Meetings Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004..

[31]  Shanti R. Rao,et al.  Enhanced photothermal displacement spectroscopy for thin-film characterization using a Fabry-Perot resonator , 2003, cond-mat/0310194.

[32]  L. Conti,et al.  Experimental measurement of the dynamic photothermal effect in Fabry-Perot cavities for gravitational wave detectors. , 2002, Physical review letters.

[33]  L. Conti,et al.  Thermoelastic effects at low temperatures and quantum limits in displacement measurements , 2000, gr-qc/0009104.

[34]  Michael L. Gorodetsky,et al.  Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae , 1999 .

[35]  C. Fang-Yen,et al.  Optical bistability induced by mirror absorption: measurement of absorption coefficients at the sub-ppm level. , 1997, Optics letters.

[36]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[37]  ManuelUphoff,et al.  Frequency splitting of polarization eigenmodes in microscopic Fabry – Perot cavities , 2015 .

[38]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .