Stability by linear approximation for time scale dynamical systems

We study systems on time scales that are generalizations of classical differential or difference equations. In this paper we consider linear systems and their small nonlinear perturbations. In terms of time scales and of eigenvalues of matrices we formulate conditions, sufficient for stability by linear approximation. We demonstrate that those conditions are close to necessary ones. For non-periodic time scales we use techniques of central upper Lyapunov exponents (a common tool of the theory of linear ODEs) to study stability of solutions. Also, time scale versions of the famous Chetaev's theorem on conditional instability are proved.

[1]  A. Martynyuk On the exponential stability of a dynamical system on a time scale , 2008 .

[2]  G. Hovhannisyan Asymptotic Stability for 2 × 2 Linear Dynamic Systems on Time Scales , 2007 .

[3]  Amos Gilat,et al.  Matlab, An Introduction With Applications , 2003 .

[4]  G. Guseinov Integration on time scales , 2003 .

[5]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[6]  S. Kryzhevich The relationship between the central exponents of linear systems and the stability of zero solutions of perturbed systems , 2000 .

[7]  S. Choi,et al.  Stability of Linear Dynamic Systems on Time Scales , 2008 .

[8]  Wei Nian Li,et al.  Some Pachpatte type inequalities on time scales , 2009, Comput. Math. Appl..

[9]  J. J. Dacunha Stability for time varying linear dynamic systems on time scales , 2005 .

[10]  G. Hovhannisyan Asymptotic stability for dynamic equations on time scales , 2006 .

[11]  A. Martynyuk,et al.  Elements of Stability Theory of A.M. Liapunov for Dynamic Equations on Time Scales , 2007 .

[12]  C. Vidal,et al.  The Chetaev Theorem for Ordinary Difference Equations , 2012 .

[13]  P. Kloeden,et al.  Lyapunov functions for linear nonautonomous dynamical equations on time scales , 2006 .

[14]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[15]  A. Bobenko,et al.  Discrete Differential Geometry: Integrable Structure , 2008 .

[16]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[17]  Christopher C. Tisdell,et al.  Stability and instability for dynamic equations on time scales , 2005 .

[18]  S. Bodine,et al.  EXPONENTIAL FUNCTIONS ON TIME SCALES: THEIR ASYMPTOTIC BEHAVIOR AND CALCULATION , 2003 .

[19]  O. Perron Über Stabilität und asymptotisches Verhalten der Integrale von Differentialgleichungssystemen , 1929 .

[20]  Stefan Siegmund,et al.  A spectral characterization of exponential stability for linear time-invariant systems on time scales , 2003 .

[21]  Deepak B. Pachpatte,et al.  Explicit estimates on integral inequalities with time scale. , 2006 .

[22]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Martin Bohner,et al.  Asymptotic Behavior of Dynamic Equations on Time Scales , 2001 .

[24]  Martin Bohner,et al.  Some Oscillation Criteria for First Order Delay Dynamic Equations , 2005 .

[25]  V. M. Millionshchikov A proof of the attainability of the central exponents of linear systems , 1969 .

[26]  Morton Nadler,et al.  The stability of motion , 1961 .

[27]  Stability of Impulsive Differential Systems , 2013 .

[28]  Mohamed Ali Hammami,et al.  A new Lyapunov function for stability of time-varying nonlinear perturbed systems , 2007, Syst. Control. Lett..

[29]  Nguyen Huu Du,et al.  On the exponential stability of dynamic equations on time scales , 2007 .

[30]  T. Gard,et al.  ASYMPTOTIC BEHAVIOR OF NATURAL GROWTH ON TIME SCALES , 2003 .