Integration of SPOT-5 and ASTER satellite data for structural tracing and hydrothermal alteration mineral mapping: implications for Cu–Au prospecting

ABSTRACT The integration of information extracted from the Syste`m Pour l’Observation de la Terre (SPOT) and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data, comprehensive field and mineralogy studies demonstrates that phyllic alteration zone associated with northwestern (NW)–southeastern (SE) structural fractures is a high potential zone for Cu–Fe–Au vein-type mineralisation in the Bajestan region, the Lut block, east Iran. The fractal pattern was calculated for fractures map using the Box-Counting algorithm to the SPOT-5 data. Statistical parameters of fractures, such as density, intensity and fractures’ intersection were also determined. Band composition, specialised band ratio and Spectral Angle Mapper (SAM) classification methods were implemented to the ASTER dataset for detecting hydrothermal alteration zones, such as propylitic, phyllic, argillic and gossan. Results indicate that the maximum value of the fractal dimension, intensity, density and the intersection of the fractures are concentrated in the NW and SE parts of SPOT image maps. In the other hand, phyllic alteration zone containing sericite, alunite, kaolinite and jarosite mineral assemblages was also identified in several zones of the NW and SE parts of the ASTER image maps. Integration of the results indicates the high potential zones for the occurrence of Cu–Fe–Au mineralisation in the Bajestan region.

[1]  A. B. Pour,et al.  Application of Landsat-8 and ASTER satellite remote sensing data for porphyry copper exploration: a case study from Shahr-e-Babak, Kerman, south of Iran , 2018 .

[2]  Mazlan Hashim,et al.  The earth observing-1 (eo-1) satellite data for geological mapping, southeastern segment of the central Iranian volcanic belt, Iran , 2011 .

[3]  A. B. Pour,et al.  Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran , 2017 .

[4]  L. Rowan,et al.  Lithologic mapping in the Mountain Pass, California area using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data , 2003 .

[5]  Nick Hewson,et al.  Gold‐Related Sulfide Mineralization and Ore Genesis of the Penjom Gold Deposit, Pahang, Malaysia , 2007 .

[6]  Yoshiki Ninomiya,et al.  A stabilized vegetation index and several mineralogic indices defined for ASTER VNIR and SWIR data , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[7]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[8]  E. Ayolabi,et al.  Lineament Extraction from SPOT 5 and NigeriaSat-X Imagery of the Upper Benue Trough, Nigeria , 2014 .

[9]  Yoshiki Ninomiya,et al.  Lithologic mapping with multispectral ASTER TIR and SWIR data , 2004, SPIE Remote Sensing.

[10]  Simon J. Hook,et al.  Mapping Hydrothermally Altered Rocks at Cuprite, Nevada, Using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), a New Satellite-Imaging System , 2003 .

[11]  Gary Higgs,et al.  Supervised classifications of Landsat TM band ratio images and Landsat TM band ratio image with radar for geological interpretations of central Madagascar , 2003 .

[12]  David J. Sanderson,et al.  Numerical study of critical behaviour of deformation and permeability of fractured rock masses , 1998 .

[13]  B. Rockwell,et al.  Identification of quartz and carbonate minerals across northern Nevada using ASTER thermal infrared emissivity data—Implications for geologic mapping and mineral resource investigations in well-studied and frontier areas , 2008 .

[14]  P. Roy,et al.  Fractal Dimensions of Blocks Using a Box-counting Technique for the 2001 Bhuj Earthquake, Gujarat, India , 2005 .

[15]  F. Sabins,et al.  Remote sensing for mineral exploration , 1999 .

[16]  M. Abdi,et al.  Application of Spectral Angle Mapper Classification to Discriminate Hydrothermal Alteration in Southwest Birjand, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer Image Processing , 2012 .

[17]  Mohammad Hassan Karimpour,et al.  Using ETM+ and airborne geophysics data to locating porphyry copper and epithermal gold deposits in eastern Iran , 2008 .

[18]  M. Hashim,et al.  Using spectral mapping techniques on short wave infrared bands of ASTER remote sensing data for alteration mineral mapping in SE Iran , 2011 .

[19]  L. Rowan,et al.  Distribution of hydrothermally altered rocks in the Reko Diq, Pakistan mineralized area based on spectral analysis of ASTER data , 2006 .

[20]  Denise McGrath,et al.  Fractals , 2018, Nonlinear Analysis for Human Movement Variability.

[21]  M. Hashim,et al.  Lithological and alteration mineral mapping in poorly exposed lithologies using Landsat-8 and ASTER satellite data: North-eastern Graham Land, Antarctic Peninsula , 2017, Ore Geology Reviews.

[22]  Are gold deposits in the crust fractals? A study of gold mines in the Zimbabwe craton , 1999, Geological Society, London, Special Publications.

[23]  S. Bijaksana,et al.  3D FRACTAL DIMENSION AND FLOW PROPERTIES IN THE PORE STRUCTURE OF GEOLOGICAL ROCKS , 2011 .

[24]  Tsehaie Woldai,et al.  Multi- and hyperspectral geologic remote sensing: A review , 2012, Int. J. Appl. Earth Obs. Geoinformation.

[25]  P. Bons The formation of large quartz veins by rapid ascent of fluids in mobile hydrofractures , 2001 .

[26]  B. Velde,et al.  Fractal patterns of fractures in granites , 1991 .

[27]  Sankaran Rajendran,et al.  Characterization of ASTER spectral bands for mapping of alteration zones of volcanogenic massive sulphide deposits , 2017 .

[28]  M. Hashim,et al.  The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits , 2012 .

[29]  J. J. Walsh,et al.  Measurement and characterisation of spatial distributions of fractures , 1993 .

[30]  Shinji Nakaya,et al.  Percolation conditions in fractured hard rocks: A numerical approach using the three-dimensional binary fractal fracture network (3D-BFFN) model , 2007 .

[31]  Ardeshir Hezarkhani,et al.  Mapping the alteration footprint and structural control of Taknar IOCG deposit in east of Iran, using ASTER satellite data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[32]  J. Harris,et al.  Remote Predictive Mapping 3. Optical Remote Sensing – A Review for Remote Predictive Geological Mapping in Northern Canada , 2011 .

[33]  Abduwasit Ghulam,et al.  ASTER detection of chromite bearing mineralized zones in Semail Ophiolite Massifs of the northern Oman Mountains: Exploration strategy , 2012 .

[34]  Herman G. J. Smit,et al.  Tropical Atlantic convection as revealed by ozone and relative humidity measurements , 2007 .

[35]  Mazlan Hashim,et al.  Regional geology mapping using satellite-based remote sensing approach in Northern Victoria Land, Antarctica , 2018 .

[36]  Yasushi Yamaguchi,et al.  ASTER instrument characterization and operation scenario , 1999 .

[37]  R. Reulke,et al.  Remote Sensing and Spatial Information Sciences , 2005 .

[38]  Å. Fagereng Fractal vein distributions within a fault-fracture mesh in an exhumed accretionary mélange, Chrystalls Beach Complex, New Zealand , 2011 .

[39]  M. Hashim,et al.  Mapping alteration mineral zones and lithological units in Antarctic regions using spectral bands of ASTER remote sensing data , 2018 .

[40]  Yoshiki Ninomiya,et al.  Mapping quartz, carbonate minerals, and mafic-ultramafic rocks using remotely sensed multispectral thermal infrared ASTER data , 2002, SPIE Defense + Commercial Sensing.

[41]  Eyal Ben-Dor,et al.  Mapping of hydrothermally altered rocks by the EO‐1 Hyperion sensor, Northern Danakil Depression, Eritrea , 2008 .

[42]  Victor E. Camp,et al.  Character, genesis and tectonic setting of igneous rocks in the Sistan suture zone, eastern Iran , 1982 .

[43]  Lawrence C. Rowan,et al.  Spectral assessment of new ASTER SWIR surface reflectance data products for spectroscopic mapping of rocks and minerals , 2010 .

[44]  S. Salem,et al.  Exploration of gold occurrences in alteration zones at Dungash district, Southeastern Desert of Egypt using ASTER data and geochemical analyses , 2016 .

[45]  H. M. Rajesh Mapping Proterozoic unconformity-related uranium deposits in the Rockhole area, Northern Territory, Australia using landsat ETM+ , 2008 .

[46]  S. Cox Deformational controls on the dynamics of fluid flow in mesothermal gold systems , 1999, Geological Society, London, Special Publications.

[47]  L. Lonergan,et al.  Fracture spacing and orientation distributions for two-dimensional data sets , 2000 .

[48]  D. Sanderson,et al.  Reactivated strike–slip faults: examples from north Cornwall, UK , 2001 .

[49]  Maged Marghany,et al.  Exploration of gold mineralization in a tropical region using Earth Observing-1 (EO1) and JERS-1 SAR data: a case study from Bau gold field, Sarawak, Malaysia , 2013, Arabian Journal of Geosciences.

[50]  S. Gabr,et al.  Detecting areas of high-potential gold mineralization using ASTER data , 2010 .

[51]  M. Hariri,et al.  Fractures system within Qusaiba shale outcrop and its relationship to the lithological properties, Qasim area, Central Saudi Arabia , 2017 .

[52]  Noelle E. Odling,et al.  Network properties of a two-dimensional natural fracture pattern , 1992 .

[53]  Richard H. Sibson,et al.  Crustal stress, faulting and fluid flow , 1994, Geological Society, London, Special Publications.

[54]  P. R. La Pointe,et al.  A method to characterize fracture density and connectivity through fractal geometry , 1988 .

[55]  J. Colby,et al.  Topographic Normalization in Rugged Terrain , 1991 .

[56]  Ahmed M. Eldosouky,et al.  Integration of remote sensing and aeromagnetic data for mapping structural features and hydrothermal alteration zones in Wadi Allaqi area, South Eastern Desert of Egypt , 2017 .

[57]  Akira Iwasaki,et al.  Validation of a crosstalk correction algorithm for ASTER/SWIR , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[58]  Mazlan Hashim,et al.  Evaluation of ICA and CEM algorithms with Landsat-8/ASTER data for geological mapping in inaccessible regions , 2019 .

[59]  Young-Seog Kim,et al.  Cenozoic deformation history of the area around Yangnam-Yangbuk, SE Korea and its tectonic significance , 2006 .

[60]  Yasushi Yamaguchi,et al.  Estimation of surface iron oxide abundance with suppression of grain size and topography effects , 2017 .

[61]  Victor E. Camp,et al.  The Sistan suture zone of eastern Iran , 1983 .

[62]  B. Berkowitz Characterizing flow and transport in fractured geological media: A review , 2002 .

[63]  M. Hashim,et al.  Structural Mapping of the Bentong‐Raub Suture Zone Using PALSAR Remote Sensing Data, Peninsular Malaysia: Implications for Sediment‐hosted/Orogenic Gold Mineral Systems Exploration , 2016 .

[64]  Richard J. Goldfarb,et al.  Phanerozoic continental growth and gold metallogeny of Asia , 2014 .

[65]  T. Hirata Fractal dimension of fault systems in Japan: Fractal structure in rock fracture geometry at various scales , 1989 .

[66]  Noelle E. Odling,et al.  Scaling and connectivity of joint systems in sandstones from western Norway , 1997 .

[67]  Stephen R. Brown,et al.  Broad bandwidth study of the topography of natural rock surfaces , 1985 .

[68]  M. H. Tangestani,et al.  Evaluating Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data for alteration zone enhancement in a semi‐arid area, northern Shahr‐e‐Babak, SE Iran , 2008 .

[69]  Xianfeng Zhang,et al.  Lithologic and mineral information extraction for gold exploration using ASTER data in the south Chocolate Mountains (California) , 2007 .

[70]  Mazlan Hashim,et al.  Spectral transformation of ASTER and Landsat TM bands for lithological mapping of Soghan ophiolite complex, south Iran , 2014 .

[71]  Thomas Cudahy,et al.  Mapping white micas and their absorption wavelengths using hyperspectral band ratios , 2006 .

[72]  The Fractal Distribution of Gold Deposits: Two Examples from the Zimbabwe Archaean Craton , 1994 .

[73]  Christine Pohl,et al.  Multisensor image fusion in remote sensing: concepts, methods and applications , 1998 .

[74]  T. Cudahy,et al.  Seamless geological map generation using ASTER in the Broken Hill-Curnamona province of Australia , 2005 .

[75]  Sankaran Rajendran,et al.  Discrimination of iron ore deposits of granulite terrain of Southern Peninsular India using ASTER data , 2011 .

[76]  D. Sanderson,et al.  Fractal analysis of the evolution of a fracture network in a granite outcrop, SE Korea , 2010 .

[77]  D. Sornette,et al.  Some consequences of a proposed fractal nature of continental faulting , 1990, Nature.

[78]  C. C. Barton Fractal Analysis of Scaling and Spatial Clustering of Fractures , 1995 .

[79]  Jörn H. Kruhl,et al.  Anisotropy quantification: the application of fractal geometry methods on tectonic fracture patterns of a Hercynian fault zone in NW Sardinia , 2004 .

[80]  N. Rubinstein,et al.  Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina , 2007 .

[81]  Yasushi Yamaguchi,et al.  Spectral indices for lithologic discrimination and mapping by using the ASTER SWIR bands , 2003 .

[82]  S. Elming,et al.  Geophysical and petrophysical study of an iron oxide copper gold deposit in northern Sweden , 2006 .

[83]  Qingquan Li,et al.  Some key techniques of SPOT-5 image processing in new national land and resources investigation project , 2004, SPIE Remote Sensing.

[84]  B. Zoheir,et al.  Integrating geologic and satellite imagery data for high-resolution mapping and gold exploration targets in the South Eastern Desert, Egypt , 2012 .

[85]  Lawrence C. Rowan,et al.  ASTER spectral analysis and lithologic mapping of the Khanneshin carbonatite volcano, Afghanistan , 2011 .

[86]  Alireza Baghbanan,et al.  Hydraulic properties of fractured rock masses with correlated fracture length and aperture , 2007 .

[87]  Majid H. Tangestani,et al.  Evaluating the effect of spatial subsetting on subpixel unmixing methodology applied to ASTER over a hydrothermally altered terrain , 2017, Int. J. Appl. Earth Obs. Geoinformation.

[88]  Jacques Octave Dubois,et al.  Fractal analysis of fractures in rocks: the Cantor's Dust method , 1991 .

[89]  Yujing Jiang,et al.  A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks , 2015 .

[90]  Mazlan Hashim,et al.  Structural mapping using PALSAR data in the Central Gold Belt, Peninsular Malaysia , 2015 .

[91]  Mazlan Hashim,et al.  Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau Goldfield, Sarawak, Malaysia , 2013 .

[92]  James Jackson,et al.  The accommodation of Arabia‐Eurasia Plate convergence in Iran , 1995 .

[93]  E. Ayolabi,et al.  Structural-depth analysis of the Yola Arm of the Upper Benue Trough of Nigeria using high resolution aeromagnetic data , 2016 .

[94]  Hiroyuki Fujisada,et al.  Design and performance of ASTER instrument , 1995, Remote Sensing.

[95]  Mazlan Hashim,et al.  ASTER, ALI and Hyperion sensors data for lithological mapping and ore minerals exploration , 2014, SpringerPlus.

[96]  Koichiro Watanabe,et al.  Integrating potential fields with remote sensing data for geological investigations in the Eljufra area of Libya , 2008 .

[97]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[98]  Jean-Pierre Petit,et al.  Joint spacing : analogue and numerical simulations , 1992 .

[99]  Reda Amer,et al.  ASTER spectral analysis for alteration minerals associated with gold mineralization , 2016 .

[100]  M. Hashim,et al.  Application of ASTER and Landsat TM Data for Geological Mapping of Esfandagheh Ophiolite Complex, Southern Iran , 2014 .

[101]  M. Hashim,et al.  Gondwana-Derived Terranes Structural Mapping Using PALSAR Remote Sensing Data , 2018, Journal of the Indian Society of Remote Sensing.

[102]  L. Rowan,et al.  Regional mapping of phyllic- and argillic-altered rocks in the Zagros magmatic arc, Iran, using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and logical operator algorithms , 2006 .

[103]  J. J. Walsh,et al.  Fractal analysis of fracture patterns using the standard box-counting technique: valid and invalid methodologies , 1993 .

[104]  Giuseppe Cello,et al.  Fractal analysis of a Quaternary fault array in the central Apennines, Italy , 1997 .

[105]  Robert J. Stern,et al.  Geological control of massive sulfide mineralization in the Neoproterozoic Wadi Bidah shear zone, southwestern Saudi Arabia, inferences from orbital remote sensing and field studies , 2003 .

[106]  R. Vincent Fundamentals of Geological and Environmental Remote Sensing , 1997 .

[107]  M. Hashim,et al.  Integrating PALSAR and ASTER data for mineral deposits exploration in tropical environments: a case study from Central Belt, Peninsular Malaysia , 2015 .

[108]  James Jackson,et al.  The 1997 May 10 Zirkuh (Qa'enat) earthquake (Mw 7.2): faulting along the Sistan suture zone of eastern Iran , 1999 .

[109]  Basem Zoheir,et al.  Field and ASTER imagery data for the setting of gold mineralization in Western Allaqi–Heiani belt, Egypt: A case study from the Haimur deposit , 2014 .

[110]  Fred A. Kruse,et al.  The Spectral Image Processing System (SIPS) - Interactive visualization and analysis of imaging spectrometer data , 1993 .

[111]  Yusuf Eshqi Molan,et al.  Mineral mapping in the Maherabad area, eastern Iran, using the HyMap remote sensing data , 2014, Int. J. Appl. Earth Obs. Geoinformation.

[112]  N. P. Christensen,et al.  Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs , 1999, Petroleum Geoscience.

[113]  D. Wiltschko,et al.  Fault controlled sequential vein dilation: competition between slip and precipitation rates in the Austin Chalk, Texas , 2000 .