Self-healing behaviour in man-made engineering materials: bioinspired but taking into account their intrinsic character

Man-made engineering materials generally demonstrate excellent mechanical properties, which often far exceed those of natural materials. However, all such engineering materials lack the ability of self-healing, i.e. the ability to remove or neutralize microcracks without (much) intentional human interaction. This inability is the unintentional consequence of the damage prevention paradigm underlying all current engineering material optimization strategies. The damage management paradigm observed in nature can be reproduced successfully in man-made engineering materials, provided the intrinsic character of the various types of engineering materials is taken into account.

[1]  Henk M. Jonkers,et al.  Self Healing Concrete: A Biological Approach , 2007 .

[2]  R S Trask,et al.  Self-healing polymer composites: mimicking nature to enhance performance , 2007, Bioinspiration & biomimetics.

[3]  R. Lumley,et al.  Self Healing in Aluminium Alloys , 2007 .

[4]  N. Sottos,et al.  Autonomic healing of polymer composites , 2001, Nature.

[5]  I. Bond,et al.  Bioinspired self-healing of advanced composite structures using hollow glass fibres , 2007, Journal of The Royal Society Interface.

[6]  Ajit K. Mal,et al.  New Thermally Remendable Highly Cross-Linked Polymeric Materials , 2003 .

[7]  S. Hayes,et al.  Self-healing of damage in fibre-reinforced polymer-matrix composites , 2007, Journal of The Royal Society Interface.

[8]  R. Lumley,et al.  ADVANCES IN SELF HEALING OF METALS , 2007 .

[9]  Shigemi Sato,et al.  Crack-healing ability of structural ceramics and a new methodology to guarantee the structural integrity using the ability and proof-test , 2005 .

[10]  En-Hua Yang,et al.  Self Healing in Concrete Materials , 2007 .

[11]  S. Bang,et al.  Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. , 2001, Enzyme and microbial technology.

[12]  Shigeki Saito,et al.  Structural properties of a scaled gecko foot-hair , 2007, Bioinspiration & biomimetics.

[13]  V. C. Li,et al.  Long Term Durability Performance of Engineered Cementitious Composites / Langzeitbeständigkeit systematisch entwickelter zusammengesetzter Zement gebundener Werkstoffe , 2006 .

[14]  E. W. Meijer,et al.  Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding , 1998 .

[15]  N. Sottos,et al.  Microcapsule induced toughening in a self-healing polymer composite , 2004 .

[16]  Nancy R. Sottos,et al.  Fatigue crack propagation in microcapsule-toughened epoxy , 2006 .

[17]  N. Shinya,et al.  Self-healing Effect of Boron Nitride Precipitation on Creep Cavitation in Austenitic Stainless Steel , 2006 .

[18]  L. Price,et al.  CARBON DIOXIDE EMISSIONS FROM THE GLOBAL CEMENT INDUSTRY , 2001 .

[19]  Michael D. Lepech,et al.  Long Term Durability Performance of Engineered Cementitious Composites , 2006 .

[20]  B. Lubelli,et al.  Self healing phenomena in concretes and masonry mortars: A microscopic study , 2007 .

[21]  J.Th.M. De Hosson,et al.  Oxidation-induced crack healing in Ti3AlC2 ceramics , 2008 .

[22]  S. Zwaag,et al.  Early stages of oxidation of Ti3AlC2 ceramics , 2008 .

[23]  Sybrand van der Zwaag,et al.  An Introduction to Material Design Principles: Damage Prevention versus Damage Management , 2007 .

[24]  A. Morton,et al.  Interrupted aging and secondary precipitation in aluminium alloys , 2003 .

[25]  N. Sottos,et al.  Fracture testing of a self-healing polymer composite , 2002 .

[26]  Carolyn M. Dry,et al.  Three designs for the internal release of sealants, adhesives, and waterproofing chemicals into concrete to reduce permeability , 2000 .

[27]  Simon A. Hayes,et al.  A self-healing thermosetting composite material , 2007 .

[28]  I. Bond,et al.  Biomimetic self-healing of advanced composite structures using hollow glass fibres , 2006 .

[29]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[30]  S. Nutt,et al.  A Thermally Re-mendable Cross-Linked Polymeric Material , 2002, Science.

[31]  S. Zwaag,et al.  Self-healing of deformation damage in underaged Al-Cu-Mg alloys , 2008 .

[32]  Thomas C Ward,et al.  Thermal characteristics of the self-healing response in poly(ethylene-co-methacrylic acid) copolymers , 2007, Journal of The Royal Society Interface.

[33]  Carolyn M. Dry,et al.  Matrix cracking repair and filling using active and passive modes for smart timed release of chemicals from fibers into cement matrices , 1994 .

[34]  Nele De Belie,et al.  Bacterial carbonate precipitation improves the durability of cementitious materials , 2008 .

[35]  Ian P Bond,et al.  Bioinspired self-healing of advanced composite materials , 2008 .

[36]  de Jeff Hosson,et al.  Self Healing Materials. An Alternative Approach to 20 Centuries of Materials Science , 2007 .

[37]  N. Sottos,et al.  Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite—Part II: In situ self-healing , 2005 .

[38]  Russell J. Varley,et al.  Towards an understanding of thermally activated self-healing of an ionomer system during ballistic penetration , 2008 .

[39]  Carolyn M. Dry,et al.  Procedures developed for self-repair of polymer matrix composite materials , 1996 .

[40]  S. V. D. Zwaag Self healing materials : an alternative approach to 20 centuries of materials science , 2007 .

[41]  N. Shinya,et al.  An advanced creep cavitation resistance Cu-containing 18Cr-12Ni-Nb austenitic stainless steel , 2007 .

[42]  S. Zwaag,et al.  Development of a quasi-static test method to investigate the origin of self-healing in ionomers under ballistic conditions , 2008 .

[43]  H. Jonkers,et al.  Development of a bacteria-based self healing concrete , 2008 .

[44]  N. Sottos,et al.  Retardation and repair of fatigue cracks in a microcapsule toughened epoxy composite – Part I: Manual infiltration , 2005 .

[45]  W. Sloof Self Healing in Coatings at High Temperatures , 2007 .