Stochastic Model Utilizing Spectral and Spatial Characteristics

In remote sensing, because of physical properties of targets, sensor pixels in spatial proximity to one another are class conditionally correlated. Our main objective is to exploit this spatial correlation. Therefore, a two-dimensional causal first order Markov model was used to extract the spatial and spectral information and, based upon it, new object classifiers with improved performance were developed. First, the minimum distance (MT) and the maximum likelihood (ML) object classifiers are discussed. Then, based on the proposed model, these two classifiers are modified, and a linear object classifier is introduced. Finally, experimental results are presented.

[1]  David L. Neuhoff,et al.  A rate and distortion analysis of chain codes for line drawings , 1985, IEEE Trans. Inf. Theory.

[2]  Jack Sklansky,et al.  Minimum-Perimeter Polygons of Digitized Silhouettes , 1972, IEEE Transactions on Computers.

[3]  Jack Koplowitz,et al.  A More Efficient Convex Hull Algorithm , 1978, Inf. Process. Lett..

[4]  Chul E. Kim On cellular straight line segments , 1982, Comput. Graph. Image Process..

[5]  G. Arthur Mihram,et al.  Dynamic Stochastic Models from Empirical Data , 1978 .

[6]  Kamal A. F. Moustafa,et al.  Parameter identification technique for multivariate stochastic systems , 1979, Autom..

[7]  S. H. Y. Hung,et al.  On the Straightness of Digital Arcs , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  R. Kashyap,et al.  Parameter estimation in multivariate stochastic difference equations , 1974 .

[9]  Herbert Freeman,et al.  Computer Processing of Line-Drawing Images , 1974, CSUR.

[10]  Herbert Freeman,et al.  On the Quantization of Line-Drawing Data , 1969, IEEE Trans. Syst. Sci. Cybern..

[11]  J. D. Tubbs Classification results using spacially correlated Landsat data , 1979 .

[12]  Jack Koplowitz,et al.  On the Performance of Chain Codes for Quantization of Line Drawings , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[14]  Joseph O'Rourke,et al.  An on-line algorithm for fitting straight lines between data ranges , 1981, CACM.

[15]  Chul E. Kim,et al.  Digital Convexity, Straightness, and Convex Polygons , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  AZRIEL ROSENFELD,et al.  Digital Straight Line Segments , 1974, IEEE Transactions on Computers.

[17]  Owen Robert Mitchell,et al.  Edge Location to Subpixel Values in Digital Imagery , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Robert P. W. Duin,et al.  Spirograph Theory: A Framework for Calculations on Digitized Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  R. G. Craig,et al.  Autocorrelation in Landsat data , 1979 .

[20]  Chul E. Kim On the Cellular Convexity of Complexes , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  S. Shinnaka,et al.  Recursive Algorithms for Implementing Digital Image Filters , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Li-De Wu,et al.  On the Chain Code of a Line , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  R. Brons,et al.  Linguistic Methods for the Description of a Straight Line on a Grid , 1974, Comput. Graph. Image Process..

[24]  Chul E. Kim,et al.  Three-Dimensional Digital Line Segments , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  M. L. Labovitz,et al.  Sources of variation in Landsat autocorrelation , 1980 .

[26]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  David A. Landgrebe,et al.  The development of a spectral-spatial classifier for earth observational data , 1980, Pattern Recognit..

[28]  Azriel Rosenfeld,et al.  Digital Straight Lines and Convexity of Digital Regions , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Jacob T. Schwartz,et al.  Finding the Minimum Distance Between Two Convex Polygons , 1981, Information Processing Letters.

[30]  Arnold W. M. Smeulders,et al.  Discrete Representation of Straight Lines , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.