Comprehensive drug response profiling and pan-omic analysis identified therapeutic candidates and prognostic biomarkers for Asian cholangiocarcinoma

[1]  S. Raman,et al.  Hepatobiliary Cancers, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. , 2021, Journal of the National Comprehensive Cancer Network : JNCCN.

[2]  Ning Fan,et al.  Somatic Mutation Profiling of Intrahepatic Cholangiocarcinoma: Comparison between Primary and Metastasis Tumor Tissues , 2020, Journal of oncology.

[3]  R. Greil,et al.  Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial. , 2020, The Lancet. Oncology.

[4]  A. Kassambara,et al.  Drawing Survival Curves using 'ggplot2' [R package survminer version 0.4.8] , 2020 .

[5]  Jimin Gao,et al.  Gain of function mutant p53 protein activates AKT through the Rac1 signaling to promote tumorigenesis , 2020, Cell cycle.

[6]  B. Teh,et al.  Functional and genetic characterization of three cell lines derived from a single tumor of an Opisthorchis viverrini-associated cholangiocarcinoma patient , 2020, Human Cell.

[7]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[8]  Yoshimasa Saito Establishment of an organoid bank of biliary tract and pancreatic cancers and its application for personalized therapy and future treatment , 2019, Journal of gastroenterology and hepatology.

[9]  Yongping Song,et al.  Gilteritinib: a novel FLT3 inhibitor for acute myeloid leukemia , 2019, Biomarker Research.

[10]  Sarah A. Boswell,et al.  Multiomics Profiling Establishes the Polypharmacology of FDA-Approved CDK4/6 Inhibitors and the Potential for Differential Clinical Activity. , 2019, Cell chemical biology.

[11]  A. Scarpa,et al.  PTEN in Lung Cancer: Dealing with the Problem, Building on New Knowledge and Turning the Game Around , 2019, Cancers.

[12]  M. C. Smith,et al.  Uncovering biomarker genes with enriched classification potential from Hallmark gene sets , 2019, Scientific Reports.

[13]  R. Kariya,et al.  Establishment of Highly Transplantable Cholangiocarcinoma Cell Lines from a Patient-Derived Xenograft Mouse Model , 2019, Cells.

[14]  Anne E Carpenter,et al.  CellProfiler 3.0: Next-generation image processing for biology , 2018, PLoS biology.

[15]  Andrea Pellino,et al.  Precision medicine in cholangiocarcinoma. , 2018, Translational gastroenterology and hepatology.

[16]  Benjamin M. Gyori,et al.  Encoding Growth Factor Identity in the Temporal Dynamics of FOXO3 under the Combinatorial Control of ERK and AKT Kinases. , 2018, Cell systems.

[17]  Evert Bosdriesz,et al.  An Acquired Vulnerability of Drug-Resistant Melanoma with Therapeutic Potential , 2018, Cell.

[18]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[19]  Chi Heem Wong,et al.  Estimation of clinical trial success rates and related parameters , 2018, Biostatistics.

[20]  M. Belvin,et al.  Correction: Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors , 2018, PloS one.

[21]  D. Calvisi,et al.  Efficacy of MEK inhibition in a K-Ras-driven cholangiocarcinoma preclinical model , 2018, Cell Death & Disease.

[22]  Bon-Kyoung Koo,et al.  Human Primary Liver Cancer -derived Organoid Cultures for disease modelling and drug screening , 2017, Nature Medicine.

[23]  M. Bragazzi,et al.  New insights into cholangiocarcinoma: multiple stems and related cell lineages of origin , 2017, Annals of gastroenterology.

[24]  Elizabeth H. Williams,et al.  GRcalculator: an online tool for calculating and mining dose–response data , 2017, BMC Cancer.

[25]  C. Pratilas,et al.  Adaptation to TKI Treatment Reactivates ERK Signaling in Tyrosine Kinase-Driven Leukemias and Other Malignancies. , 2017, Cancer research.

[26]  Lily Shao,et al.  Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors , 2017, PloS one.

[27]  Bin Tean Teh,et al.  Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. , 2017, Cancer discovery.

[28]  V. Macaulay,et al.  Insulin-Like Growth Factor (IGF) Pathway Targeting in Cancer: Role of the IGF Axis and Opportunities for Future Combination Studies , 2017, Targeted Oncology.

[29]  A. Arcaro,et al.  Questioning the role of selected somatic PIK3C2B mutations in squamous non-small cell lung cancer oncogenesis , 2017, bioRxiv.

[30]  Y. Pomyen,et al.  Common Molecular Subtypes Among Asian Hepatocellular Carcinoma and Cholangiocarcinoma. , 2017, Cancer cell.

[31]  T. Bekaii-Saab,et al.  Biliary cancer: intrahepatic cholangiocarcinoma vs. extrahepatic cholangiocarcinoma vs. gallbladder cancers: classification and therapeutic implications. , 2017, Journal of gastrointestinal oncology.

[32]  Chris Sander,et al.  Integrative Genomic Analysis of Cholangiocarcinoma Identifies Distinct IDH-Mutant Molecular Profiles , 2017, Cell reports.

[33]  Yiling Lu,et al.  Characterization of Human Cancer Cell Lines by Reverse-phase Protein Arrays. , 2017, Cancer cell.

[34]  D. Lauffenburger,et al.  Profiling drugs for rheumatoid arthritis that inhibit synovial fibroblast activation , 2016, Nature chemical biology.

[35]  E. Birney,et al.  Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration , 2016, Nature Communications.

[36]  Emanuel J. V. Gonçalves,et al.  A Landscape of Pharmacogenomic Interactions in Cancer , 2016, Cell.

[37]  James T. Webber,et al.  Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. , 2016, Cancer discovery.

[38]  M. Nishimura,et al.  Epithelial-to-Mesenchymal Transition Defines Feedback Activation of Receptor Tyrosine Kinase Signaling Induced by MEK Inhibition in KRAS-Mutant Lung Cancer. , 2016, Cancer discovery.

[39]  H. You,et al.  FoxO3 inactivation promotes human cholangiocarcinoma tumorigenesis and chemoresistance through Keap1‐Nrf2 signaling , 2016, Hepatology.

[40]  P. Sorger,et al.  Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs , 2016, Nature Methods.

[41]  Charles C. Kim,et al.  Trimming of sequence reads alters RNA-Seq gene expression estimates , 2016, BMC Bioinformatics.

[42]  N. Chamadol,et al.  Cholangiocarcinoma Patient Outcome in Northeastern Thailand: Single-Center Prospective Study. , 2016, Asian Pacific journal of cancer prevention : APJCP.

[43]  Jie Tan,et al.  Cross-platform normalization of microarray and RNA-seq data for machine learning applications , 2016, PeerJ.

[44]  Joshua A. Bittker,et al.  Correlating chemical sensitivity and basal gene expression reveals mechanism of action , 2015, Nature chemical biology.

[45]  Jeffrey S. Morris,et al.  The Consensus Molecular Subtypes of Colorectal Cancer , 2015, Nature Medicine.

[46]  K. Wong,et al.  Nutlin-3a: A Potential Therapeutic Opportunity for TP53 Wild-Type Ovarian Carcinomas , 2015, PloS one.

[47]  Edwin Cuppen,et al.  Sambamba: fast processing of NGS alignment formats , 2015, Bioinform..

[48]  R. Verhaak,et al.  The landscape and therapeutic relevance of cancer-associated transcript fusions , 2014, Oncogene.

[49]  M. Jücker,et al.  Dual Inhibition of PI3K-AKT-mTOR- and RAF-MEK-ERK-signaling is synergistic in cholangiocarcinoma and reverses acquired resistance to MEK-inhibitors , 2014, Investigational New Drugs.

[50]  T. Pawlik,et al.  Hepatobiliary cancers, version 2.2014. , 2014, Journal of the National Comprehensive Cancer Network : JNCCN.

[51]  Jacob J. Hughey,et al.  High-Sensitivity Measurements of Multiple Kinase Activities in Live Single Cells , 2014, Cell.

[52]  Marc Hafner,et al.  Analysis of growth factor signaling in genetically diverse breast cancer lines , 2014, BMC Biology.

[53]  B. McManus,et al.  Variation in RNA-Seq Transcriptome Profiles of Peripheral Whole Blood from Healthy Individuals with and without Globin Depletion , 2014, PloS one.

[54]  Swe Swe Myint,et al.  Exome sequencing identifies distinct mutational patterns in liver fluke–related and non-infection-related bile duct cancers , 2013, Nature Genetics.

[55]  E. Sirachainan,et al.  Treatment outcome of palliative chemotherapy in inoperable cholangiocarcinoma in Thailand. , 2013, Asian Pacific journal of cancer prevention : APJCP.

[56]  E. Dmitrovsky,et al.  Comparing Histone Deacetylase Inhibitor Responses in Genetically Engineered Mouse Lung Cancer Models and a Window of Opportunity Trial in Patients with Lung Cancer , 2013, Molecular Cancer Therapeutics.

[57]  W. Shi,et al.  The Subread aligner: fast, accurate and scalable read mapping by seed-and-vote , 2013, Nucleic acids research.

[58]  Julian Downward,et al.  Coordinate direct input of both KRAS and IGF1 receptor to activation of PI3 kinase in KRAS-mutant lung cancer. , 2013, Cancer discovery.

[59]  Sridhar Ramaswamy,et al.  Genomics of Drug Sensitivity in Cancer (GDSC): a resource for therapeutic biomarker discovery in cancer cells , 2012, Nucleic Acids Res..

[60]  Jill P. Mesirov,et al.  Cancer Vulnerabilities Unveiled by Genomic Loss , 2012, Cell.

[61]  Bin Tean Teh,et al.  Exome sequencing of liver fluke–associated cholangiocarcinoma , 2012, Nature Genetics.

[62]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[63]  Itzhak Avital,et al.  Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors. , 2012, Gastroenterology.

[64]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[65]  Andrew E. Jaffe,et al.  Bioinformatics Applications Note Gene Expression the Sva Package for Removing Batch Effects and Other Unwanted Variation in High-throughput Experiments , 2022 .

[66]  M. Grever,et al.  Multi-institutional phase II study of selumetinib in patients with metastatic biliary cancers. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[67]  Süleyman Cenk Sahinalp,et al.  deFuse: An Algorithm for Gene Fusion Discovery in Tumor RNA-Seq Data , 2011, PLoS Comput. Biol..

[68]  H. Hong,et al.  Acquisition of chemoresistance in intrahepatic cholangiocarcinoma cells by activation of AKT and extracellular signal-regulated kinase (ERK)1/2. , 2011, Biochemical and biophysical research communications.

[69]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[70]  D. Cunningham,et al.  Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. , 2010, The New England journal of medicine.

[71]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[72]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[73]  Stephen L. Abrams,et al.  Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy , 2008, Leukemia.

[74]  K. Schmid,et al.  AKT and ERK1/2 signaling in intrahepatic cholangiocarcinoma. , 2007, World journal of gastroenterology.

[75]  Jill P. Mesirov,et al.  Subclass Mapping: Identifying Common Subtypes in Independent Disease Data Sets , 2007, PloS one.

[76]  Banchob Sripa,et al.  Liver Fluke Induces Cholangiocarcinoma , 2007, PLoS medicine.

[77]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[78]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  M. Miwa,et al.  Establishment and characterization of an opisthorchiasis-associated cholangiocarcinoma cell line (KKU-100). , 2005, World journal of gastroenterology.

[80]  R. Gray Modeling Survival Data: Extending the Cox Model , 2002 .

[81]  M. Ducreux,et al.  Effective treatment of advanced biliary tract carcinoma using 5-fluorouracil continuous infusion with cisplatin. , 1998, Annals of oncology : official journal of the European Society for Medical Oncology.

[82]  Edward M. Reingold,et al.  Graph drawing by force‐directed placement , 1991, Softw. Pract. Exp..

[83]  Matthew P. Goetz,et al.  NCCN CLINICAL PRACTICE GUIDELINES IN ONCOLOGY , 2019 .

[84]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[85]  J. Mesirov,et al.  The Molecular Signatures Database (MSigDB) hallmark gene set collection. , 2015, Cell systems.

[86]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[87]  C. Pairojkul Liver fluke and cholangiocarcinoma in Thailand , 2014 .

[88]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[89]  T. Brunner,et al.  Biliary cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. , 2010, Annals of oncology : official journal of the European Society for Medical Oncology.

[90]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[91]  Gábor Csárdi,et al.  The igraph software package for complex network research , 2006 .

[92]  Kathleen Ruff,et al.  ON BEHALF OF THE , 2000 .

[93]  P. Grambsch,et al.  A Package for Survival Analysis in S , 1994 .