Authentication protocol based on collective quantum steering

It is well known that certain quantum correlations like quantum steering exhibit a monogamous relationship. In this paper, we exploit the asymmetric nature of quantum steering and show that there exist states which exhibit a polygamous correlation, known as collective correlation [He and Reid, Phys. Rev. Lett. 111, 250403 (2013)], where the state of one party, Alice, can be steered only by the joint effort of the other two parties, Bob and Charlie. As an example, we explicitly single out a particular set of $3$ qubit states which exhibit this polygamous relationship, known as collective steerability. We provide a recipe to identify the complete set of such states. We also provide a possible application of such states to an information theoretic task, termed as quantum key authentication (QKA) protocol. QKA can also be used in conjunction with other well known cryptography protocols to improve their security and we provide one such example with quantum private comparison (QPC).

[1]  A. Pati,et al.  Nonlocal advantage of quantum coherence , 2015, 1508.03770.

[2]  Zach DeVito,et al.  Opt , 2017 .

[3]  Marc Kaplan,et al.  Fine-grained Einstein-Podolsky-Rosen-steering inequalities , 2014 .

[4]  A. Winter,et al.  Graph-theoretic approach to quantum correlations. , 2014, Physical review letters.

[5]  Gerardo Adesso,et al.  Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. , 2017, Physical review letters.

[6]  Tzonelih Hwang,et al.  New quantum private comparison protocol using EPR pairs , 2011, Quantum Information Processing.

[7]  C. Jebaratnam Detecting genuine multipartite entanglement in steering scenarios , 2015, 1510.08800.

[8]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[9]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[10]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[11]  Davide Girolami,et al.  Observable measure of quantum coherence in finite dimensional systems. , 2014, Physical review letters.

[12]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[13]  Q. Gong,et al.  Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with optical networks , 2014, Nature Physics.

[14]  Akihito Soeda,et al.  Generalized monogamy of contextual inequalities from the no-disturbance principle. , 2012, Physical review letters.

[15]  J. O'Brien,et al.  Demonstration of free-space reference frame independent quantum key distribution , 2013, 1305.0158.

[16]  Manik Banik Measurement incompatibility and Schrödinger-Einstein-Podolsky-Rosen steering in a class of probabilistic theories , 2015, 1502.05779.

[17]  M. Seevinck Monogamy of Correlations vs . Monogamy of Entanglement , 2009 .

[18]  A C Doherty,et al.  Steering, entanglement, nonlocality, and the Einstein-Podolsky-Rosen paradox. , 2007, Physical review letters.

[19]  Arvind,et al.  Quantum key distribution protocol based on contextuality monogamy , 2016, 1612.02616.

[20]  M D Reid,et al.  Genuine multipartite Einstein-Podolsky-Rosen steering. , 2012, Physical review letters.

[21]  Dong Yang A simple proof of monogamy of entanglement , 2006, quant-ph/0604168.

[22]  David Jennings,et al.  Quantum steering ellipsoids, extremal physical states and monogamy , 2014, 1403.0418.

[23]  Qihuang Gong,et al.  Collective multipartite Einstein-Podolsky-Rosen steering: more secure optical networks. , 2014, Optics letters.

[24]  T. Paterek,et al.  Correlation complementarity yields bell monogamy relations. , 2010, Physical review letters.

[25]  M. Reid,et al.  Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering , 2013, 1310.2729.

[26]  D. Kaszlikowski,et al.  Complementarity relations between quantum steering criteria , 2017, Physical Review A.

[27]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[28]  A. Winter,et al.  Monogamy of quantum entanglement and other correlations , 2003, quant-ph/0310037.

[29]  D. Saha,et al.  Activation of monogamy in nonlocality using local contextuality , 2016, 1606.04021.

[30]  Marcin Pawlowski,et al.  Security proof for cryptographic protocols based only on the monogamy of Bell's inequality violations , 2009, 0907.3778.

[31]  V. Scarani,et al.  Reference-frame-independent quantum key distribution , 2010, 1003.1050.

[32]  A. Falcon Physics I.1 , 2018 .

[33]  Yixian Yang,et al.  An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement , 2010 .

[34]  M. Pawłowski,et al.  Monogamy of Bell's inequality violations in nonsignaling theories. , 2008, Physical Review Letters.

[35]  A. S. Majumdar,et al.  Cost of Einstein-Podolsky-Rosen steering in the context of extremal boxes. , 2017, 1702.00672.

[36]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[37]  M. Plenio,et al.  Quantifying coherence. , 2013, Physical review letters.

[38]  Gerardo Adesso,et al.  Unconditional security of entanglement-based continuous-variable quantum secret sharing , 2016, 1603.03224.

[39]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[40]  M. P. Seevinck,et al.  Monogamy of correlations versus monogamy of entanglement , 2009, Quantum Inf. Process..

[41]  Byung Kwon Park,et al.  Robustness of reference-frame-independent quantum key distribution against the relative motion of the reference frames , 2017, 1701.07587.

[42]  Gerardo Adesso,et al.  Multipartite Gaussian steering: monogamy constraints and quantum cryptography applications , 2016, 1603.08173.