Dominant Northern Hemisphere climate control over millennial-scale glacial sea-level variability

[1]  André Berger,et al.  Milankovitch and Climate , 1984, NATO ASI Series.

[2]  J. D. Hays,et al.  The orbital theory of Pleistocene climate : Support from a revised chronology of the marine δ^ O record. , 1984 .

[3]  R. Fairbanks A 17,000-year glacio-eustatic sea level record: influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation , 1989, Nature.

[4]  E. Bard,et al.  Deglacial sea-level record from Tahiti corals and the timing of global meltwater discharge , 1996, Nature.

[5]  D. Quadfasel,et al.  Renewal of deep water in the Red Sea during 1982–1987 , 1996 .

[6]  M. Stuiver,et al.  Oxygen 18/16 variability in Greenland snow and ice with 10 -3- to 105-year time resolution , 1997 .

[7]  S. Manabe,et al.  Coupled ocean‐atmosphere model response to freshwater input: Comparison to Younger Dryas Event , 1997 .

[8]  J. Duplessy,et al.  Evidence for changes in the North Atlantic Deep Water linked to meltwater surges during the Heinrich events , 1997 .

[9]  Extension of the (super 14) C calibration curve to ca. 40,000 cal BC by synchronizing Greenland (super 18) O/ (super 16) O ice core records and North Atlantic Foraminifera profiles; a comparison with U/ Th coral data. , 1997 .

[10]  N. Naik,et al.  Climatological Coastal Jet Collision, Intermediate Water Formation, and the General Circulation of the Red Sea* , 1997 .

[11]  Jelle Bijma,et al.  Reevaluation of the oxygen isotopic composition of planktonic foraminifera: Experimental results and revised paleotemperature equations , 1998 .

[12]  A. Rosell‐Melé,et al.  Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .

[13]  Francisco Javier Sierro,et al.  Dansgaard‐Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures , 1999 .

[14]  N. Nowaczyk,et al.  Geomagnetic events and relative palaeointensity variations during the past 300 ka as recorded in Kolbeinsey Ridge sediments, Iceland Sea: indication for a strongly variable geomagnetic field , 1999 .

[15]  J. Beer,et al.  North Atlantic palaeointensity stack since 75ka (NAPIS–75) and the duration of the Laschamp event , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[16]  J. Overpeck,et al.  Synchronous radiocarbon and climate shifts during the last deglaciation. , 2000, Science.

[17]  J. Pätzold Report and preliminary results of METEOR Cruise M44/3, Aqaba (Jordan) - Safaga (Egypt) - Duba (Saudi Arabia) - Suez (Egypt) - Haifa (Israel), 12.3.-26.3.-2.4.-4.4.1999. , 2000 .

[18]  Victor Brovkin,et al.  CLIMBER-2: a climate system model of intermediate complexity. Part I: model description and performance for present climate , 2000 .

[19]  M. Sarnthein,et al.  Radiocarbon Levels in the Iceland Sea from 25–53 kyr and their Link to the Earth's Magnetic Field Intensity , 2000, Radiocarbon.

[20]  N. Shackleton,et al.  Phase relationships between millennial‐scale events 64,000–24,000 years ago , 2000 .

[21]  Stefan Rahmstorf,et al.  Rapid changes of glacial climate simulated in a coupled climate model , 2001, Nature.

[22]  E. Brook,et al.  Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. , 2001, Science.

[23]  Dorthe Dahl-Jensen,et al.  Oxygen isotope and palaeotemperature records from six Greenland ice‐core stations: Camp Century, Dye‐3, GRIP, GISP2, Renland and NorthGRIP , 2001 .

[24]  H. Kassens,et al.  Sedimentation rates in the Makarov Basin, central Arctic Ocean: A paleomagnetic and rock magnetic approach , 2001 .

[25]  John Chappell,et al.  Sea level changes forced ice breakouts in the Last Glacial cycle: new results from coral terraces , 2002 .

[26]  S. Rahmstorf Ocean circulation and climate during the past 120,000 years , 2002, Nature.

[27]  C. Laj,et al.  South Atlantic and North Atlantic geomagnetic paleointensity stacks (0-80 ka): implications for inter-hemispheric correlation , 2002 .

[28]  E. Bard,et al.  Climate Shock: Abrupt Changes over Millennial Time Scales , 2002 .

[29]  Andreas Schmittner,et al.  Instability of Glacial Climate in a Model of the Ocean- Atmosphere-Cryosphere System , 2002, Science.

[30]  M. Claussen,et al.  Large‐scale instabilities of the Laurentide ice sheet simulated in a fully coupled climate‐system model , 2002 .

[31]  C. Ritz,et al.  Simulations of Northern Hemisphere ice-sheet retreat:: sensitivity to physical mechanisms involved during the Last Deglaciation , 2002 .

[32]  G. Burr,et al.  Rapid sea-level fall and deep-ocean temperature change since the last interglacial period , 2003 .

[33]  M. Siddall,et al.  Sea-level fluctuations during the last glacial cycle , 2003, Nature.

[34]  P. Müller,et al.  Mediterranean Moisture Source for an Early-Holocene Humid Period in the Northern Red Sea , 2003, Science.

[35]  Peter J Müller,et al.  Influence of Northern Hemisphere climate and global sea level rise on the restricted Red Sea marine environment during termination I , 2003 .

[36]  H. Elderfield,et al.  Millennial‐scale variability of deep‐water temperature and δ18Odw indicating deep‐water source variations in the Northeast Atlantic, 0–34 cal. ka BP , 2003 .

[37]  D. Roche,et al.  Constraints on the duration and freshwater release of Heinrich event 4 through isotope modelling , 2004, Nature.

[38]  Caitlin E. Buck,et al.  Intcal04 Terrestrial Radiocarbon Age Calibration, 0–26 Cal Kyr BP , 2004, Radiocarbon.

[39]  N. Shackleton,et al.  Rapid Communication Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for D 14 C , 2004 .

[40]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[41]  A. Timmermann,et al.  Strong hemispheric coupling of glacial climate through freshwater discharge and ocean circulation , 2004, Nature.

[42]  Eelco J. Rohling,et al.  Similar meltwater contributions to glacial sea level changes from Antarctic and northern ice sheets , 2004, Nature.

[43]  N. Shackleton,et al.  Absolute calibration of the Greenland time scale: implications for Antarctic time scales and for Δ14C , 2004 .

[44]  S. Hemming,et al.  Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint , 2004 .

[45]  J. Overpeck,et al.  14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years , 2004, Science.

[46]  E. Bard,et al.  A Better Radiocarbon Clock , 2004, Science.

[47]  R. Zahn,et al.  Southern Hemisphere Water Mass Conversion Linked with North Atlantic Climate Variability , 2005, Science.

[48]  C. Zweck,et al.  Modeling of the northern hemisphere ice sheets during the last glacial cycle and glaciological sensitivity , 2005 .

[49]  S. Goldstein,et al.  Open-System Coral Ages Reveal Persistent Suborbital Sea-Level Cycles , 2005, Science.

[50]  H. Synal,et al.  Geomagnetic field intensity during the last 60,000 years based on 10Be and 36Cl from the Summit ice cores and 14C , 2005 .

[51]  T. Guilderson,et al.  Radiocarbon calibration curve spanning 0 to 50,000 years BP based on paired 230 Th/ 234 U/ 238 U and 14 C dates on pristine corals , 2005 .

[52]  P. G. Knight Glacier science and environmental change , 2006 .

[53]  Olaf,et al.  Extension of the 14C Calibration Curve to ca. 40,000 Cal BC by Synchronizing Greenland 180/16O Ice Core Records and North Atlantic Foraminifera Profiles: A Comparison with U/Th Coral Data , 1997, Radiocarbon.

[54]  P. Huybrechts Numerical Modelling of Polar Ice Sheets through Time , 2007 .