Beaming thermal emission from hot metallic bull's eyes.

We theoretically examine thermal emission from metallic films with surfaces that are patterned with a series of circular concentric grooves (a bull's eye pattern). Due to thermal excitation of surface plasmons, theory predicts that a single beam of light can be emitted from these films in the normal direction that is narrow, both in terms of its spectrum and its angular divergence. Thus, we show that metallic films can generate monochromatic directional beams of light by a simple thermal process.

[1]  Irina Puscasu,et al.  Photonic crystal enhanced narrow-band infrared emitters , 2002 .

[2]  D. Hall,et al.  Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution. , 1994, Optics letters.

[3]  R. Carminati,et al.  Highly directional radiation generated by a tungsten thermal source. , 2005, Optics letters.

[4]  E. Popov,et al.  Optimization of plasmon excitation at structured apertures. , 2005, Applied optics.

[5]  Volker Wittwer,et al.  Radiation filters and emitters for the NIR based on periodically structured metal surfaces , 2000 .

[6]  Theory of thermal emission from periodic structures , 2009 .

[7]  Jay N. Zemel,et al.  Organ pipe radiant modes of periodic micromachined silicon surfaces , 1986, Nature.

[8]  Erez Hasman,et al.  Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves , 2007 .

[9]  Si‐Chen Lee,et al.  Localized surface plasmons in Al∕Si structure and Ag∕SiO2∕Ag emitter with different concentric metal rings , 2008 .

[10]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[11]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[12]  H. Lezec,et al.  Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations. , 2003, Physical review letters.

[13]  R. Carminati,et al.  Coherent emission of light by thermal sources , 2002, Nature.

[14]  David J. Perreault,et al.  Resonant-cavity enhanced thermal emission , 2005 .

[15]  Jonathan P. Dowling,et al.  MODIFICATION OF PLANCK BLACKBODY RADIATION BY PHOTONIC BAND-GAP STRUCTURES , 1999, QELS 2000.

[16]  Dennis G. Hall,et al.  Circularly symmetric distributed feedback semiconductor laser : an analysis , 1990 .

[17]  Ekmel Ozbay,et al.  Extraordinary grating-coupled microwave transmission through a subwavelength annular aperture. , 2005, Optics express.

[18]  J. Pendry,et al.  Calculation of photon dispersion relations. , 1992, Physical review letters.

[19]  Erez Hasman,et al.  Highly coherent thermal emission obtained by plasmonic bandgap structures , 2008 .

[20]  Miceli,et al.  Diffraction-free beams. , 1987, Physical review letters.

[21]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[22]  Robert Furstenberg,et al.  Filling Fraction Dependent Properties of Inverse Opal Metallic Photonic Crystals , 2007 .

[23]  J. Greffet,et al.  Degree of polarization of thermal light emitted by gratings supporting surface waves. , 2008, Optics express.

[24]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[25]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[26]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[27]  J. G. Fleming,et al.  All-metallic three-dimensional photonic crystals with a large infrared bandgap , 2002, Nature.

[28]  A. Stein,et al.  Tailoring self-assembled metallic photonic crystals for modified thermal emission. , 2007, Physical review letters.