Virtual levels and virtual states of linear operators in Banach spaces. Applications to Schroedinger operators

Virtual levels, also known as threshold resonances, admit several equivalent characterizations: (1) there are corresponding virtual states from a space slightly weaker than L; (2) there is no limiting absorption principle in their vicinity (e.g. no weights such that the “sandwiched” resolvent is uniformly bounded); (3) an arbitrarily small perturbation can produce an eigenvalue. We develop a general approach to virtual levels in Banach spaces and provide applications to Schrödinger operators with nonselfadjoint potentials and in any dimension.

[1]  E. Wigner Über die Streuung von Neutronen an Protonen , 1933 .

[2]  Felix E. Browder,et al.  On the spectral theory of elliptic differential operators. I , 1961 .

[3]  Uniform bounds of discrete Birman–Schwinger operators , 2018, Transactions of the American Mathematical Society.

[4]  H. Mizutani,et al.  Uniform resolvent and Strichartz estimates for Schr\"odinger equations with critical singularities , 2016, 1607.01187.

[5]  P. Sabatier,et al.  Inverse Problems in Quantum Scattering Theory , 1977 .

[6]  Barry Simon,et al.  Quantum Mechanics for Hamiltonians Defined as Quadratic Forms , 1971 .

[7]  E. Gagliardo,et al.  Interpolation spaces and interpolation methods , 1965 .

[8]  A. Jensen,et al.  A unified approach to resolvent expansions at thresholds , 2001 .

[9]  Tosio Kato Perturbation theory for linear operators , 1966 .

[10]  E. Lakshtanov,et al.  Designing lasing and perfectly absorbing potentials , 2018, Physical Review A.

[11]  N. Boussaid,et al.  Nonlinear Dirac Equation , 2019 .

[12]  D. Bollé,et al.  Threshold scattering in two dimensions , 1988 .

[13]  Shmuel Agmon,et al.  Spectral properties of Schrödinger operators and scattering theory , 1975 .

[14]  Barry Simon,et al.  The bound state of weakly coupled Schrödinger operators in one and two dimensions , 1976 .

[15]  B. Seckler,et al.  The Inverse Problem in the Quantum Theory of Scattering... , 1964 .

[16]  Christopher D. Sogge,et al.  Uniform Sobolev inequalities and unique continuation for second order constant coefficient differential operators , 1987 .

[17]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[18]  H. Mizutani Eigenvalue bounds for non-self-adjoint Schrödinger operators with the inverse-square potential , 2016, Journal of Spectral Theory.

[19]  B. Vainberg ON THE ANALYTICAL PROPERTIES OF THE RESOLVENT FOR A CERTAIN CLASS OF OPERATOR-PENCILS , 1968 .

[20]  D. Yafaev SCATTERING SUBSPACES AND ASYMPTOTIC COMPLETENESS FOR THE TIME-DEPENDENT SCHRÖDINGER EQUATION , 1983 .

[21]  Arne Jensen,et al.  Spectral properties of Schrödinger operators and time-decay of the wave functions , 1979 .

[22]  J. Schwartz Some non-selfadjoint operators , 1960 .

[23]  William R. Green,et al.  The Dirac Equation in Two Dimensions: Dispersive Estimates and Classification of Threshold Obstructions , 2016, 1606.00871.

[24]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[25]  H. Walker,et al.  The null spaces of elliptic partial differential operators in Rn , 1973 .

[26]  R. Frank Eigenvalue bounds for Schrödinger operators with complex potentials , 2010, 1504.01144.

[27]  D. Hundertmark,et al.  Exponential decay of eigenfunctions and generalized eigenfunctions of a non‐self‐adjoint matrix Schrödinger operator related to NLS , 2007, math-ph/0703068.

[28]  J. Rauch Local decay of scattering solutions to Schrödinger's equation , 1978 .

[29]  Julian Schwinger,et al.  Field theory of unstable particles , 1960 .

[30]  K. Yajima Dispersive Estimates for Schrödinger Equations with Threshold Resonance and Eigenvalue , 2005 .

[31]  Barry Simon,et al.  Resonances in n-Body Quantum Systems With Dilatation Analytic Potentials and the Foundations of Time-Dependent Perturbation Theory , 1973 .

[32]  J. Ginibre,et al.  Hilbert space approach to the quantum mechanical three-body problem , 1974 .

[33]  A. Jensen Spectral properties of Schrödinger operators and time-decay of the wave functions. Results in L2(R4) , 1984 .

[34]  D. Yafaev Mathematical scattering theory , 1992 .

[35]  Nabile Boussaid,et al.  On the Asymptotic Stability of Small Nonlinear Dirac Standing Waves in a Resonant Case , 2006, SIAM J. Math. Anal..

[36]  J. Weiddman,et al.  SPECTRAL THEORY AND DIFFERENTIAL OPERATORS (Oxford Mathematical Monographs) , 1989 .

[37]  R. McOwen The behavior of the laplacian on weighted sobolev spaces , 1979 .

[38]  S. Bögli Schrödinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues , 2016 .

[39]  D. Yafaev The virtual level of the Schrödinger equation , 1979 .

[40]  B. Vainberg,et al.  PRINCIPLES OF RADIATION, LIMIT ABSORPTION AND LIMIT AMPLITUDE IN THE GENERAL THEORY OF PARTIAL DIFFERENTIAL EQUATIONS , 1966 .

[41]  Yakun Xi,et al.  An endpoint version of uniform Sobolev inequalities , 2016, Forum Mathematicum.

[42]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[43]  B. Vainberg,et al.  ON THE SHORT WAVE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF STATIONARY PROBLEMS AND THE ASYMPTOTIC BEHAVIOUR AS t???? OF SOLUTIONS OF NON-STATIONARY PROBLEMS , 1975 .

[44]  Wilhelm Schlag,et al.  Dispersive estimates for Schrödinger operators in the presence of a resonance and/or an eigenvalue at zero energy in dimension three: I , 2004 .

[45]  A. Sommerfeld,et al.  Die Greensche Funktion der Schwingungslgleichung. , 1912 .

[46]  D. R. Jafaev ON THE THEORY OF THE DISCRETE SPECTRUM OF THE THREE-PARTICLE SCHRÖDINGER OPERATOR , 1974 .

[47]  L. Nikolova,et al.  On ψ- interpolation spaces , 2009 .

[48]  E. Fermi On the Recombination of Neutrons and Protons , 1935 .

[49]  A. Samarskii,et al.  The Radiation Principle , 1948 .

[50]  William R. Green,et al.  Dispersive estimates for Dirac operators in dimension three with obstructions at threshold energies , 2016, American Journal of Mathematics.

[51]  D. Bollé,et al.  A complete treatment of low-energy scattering in one dimension , 1985 .

[52]  Stable Directions for Small Nonlinear Dirac Standing Waves , 2005, math-ph/0512054.