Anisotropic-medium PML for vector FETD with modified basis functions

A novel anisotropic-medium perfectly matched layer (PML) implementation is presented for boundary truncation in the three-dimensional vector finite-element time-domain (FETD) method. This approach utilizes a complex set of vector test and basis functions in the PML region, that recover the usual basis functions in the non-PML region. Numerical examples show that the proposed PML-FETD approach has small reflection errors and no observed late-time instabilities for simulations involving up to 10/sup 6/ time steps.

[1]  Thomas Weiland,et al.  Numerical stability of finite difference time domain methods , 1998 .

[2]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[3]  Jin-Fa Lee,et al.  A perfectly matched anisotropic absorber for use as an absorbing boundary condition , 1995 .

[4]  F. Teixeira,et al.  An efficient PML implementation for the ADI-FDTD method , 2003, IEEE Microwave and Wireless Components Letters.

[5]  A. Iserles A First Course in the Numerical Analysis of Differential Equations: Stiff equations , 2008 .

[6]  Gang Liu,et al.  Perfectly matched layer media with CFS for an unconditionally stable ADI-FDTD method , 2001 .

[7]  O. Zienkiewicz,et al.  Finite elements and approximation , 1983 .

[8]  S. Gedney,et al.  Numerical stability of nonorthogonal FDTD methods , 2000 .

[9]  Fernando L. Teixeira,et al.  General closed-form PML constitutive tensors to match arbitrary bianisotropic and dispersive linear media , 1998 .

[10]  Raymond J. Luebbers,et al.  FDTD for Nth-order dispersive media , 1992 .

[11]  Carretera de Valencia,et al.  The finite element method in electromagnetics , 2000 .

[12]  F. Teixeira,et al.  On the Degrees of Freedom of Lattice Electrodynamics , 2008 .

[13]  W. Rudin Real and complex analysis , 1968 .

[14]  Raj Mittra,et al.  Frequency dependence of the constitutive parameters of causal perfectly matched anisotropic absorbers , 1996 .

[15]  Weng Cho Chew,et al.  PML-FDTD in cylindrical and spherical grids , 1997 .

[16]  Jin-Fa Lee,et al.  Systematic method for finding a hierarchical vector finite element of any order using the Nedelec criteria and a Webb basis , 2001, IEEE Antennas and Propagation Society International Symposium. 2001 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.01CH37229).

[17]  Allen Taflove,et al.  Computational Electrodynamics the Finite-Difference Time-Domain Method , 1995 .

[18]  Jin-Fa Lee,et al.  WETD /spl minus/ a finite element time-domain approach for solving Maxwell's equations , 1994 .

[19]  Jian-Ming Jin,et al.  A fast time-domain finite element-boundary integral method for electromagnetic analysis , 2001 .

[20]  Ruey-Beei Wu,et al.  Treating late-time instability of hybrid finite-element/finite-difference time-domain method , 1999 .

[21]  Jin-Fa Lee,et al.  Hierarchical vector finite elements for analyzing waveguiding structures , 2003 .

[22]  Jian-Ming Jin,et al.  Conformal PML-FDTD schemes for electromagnetic field simulations: a dynamic stability study , 2001 .

[23]  W. Chew,et al.  Lattice electromagnetic theory from a topological viewpoint , 1999 .

[24]  Weng Cho Chew,et al.  A 3D perfectly matched medium from modified maxwell's equations with stretched coordinates , 1994 .

[25]  S. Gedney An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices , 1996 .

[26]  Tatsuo Itoh,et al.  An unconditionally stable extended (USE) finite-element time-domain solution of active nonlinear microwave circuits using perfectly matched layers , 2001, IMS 2001.

[27]  J. Bérenger,et al.  Application of the CFS PML to the absorption of evanescent waves in waveguides , 2002, IEEE Microwave and Wireless Components Letters.

[28]  Jin-Fa Lee,et al.  Time-domain finite-element methods , 1997 .

[29]  Peter P. Silvester,et al.  Finite elements for electrical engineers: Finite Elements for Electrical Engineers , 1996 .

[30]  Jian-Ming Jin,et al.  Time-domain finite-element simulation of three-dimensional scattering and radiation problems using perfectly matched layers , 2003 .

[31]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[32]  J. Crank Difference Methods for Initial-Value Problems 2nd edn , 1968 .

[33]  R. W. Zislkowski The design of Maxwellian absorbers for numerical boundary conditions and for practical applications using engineered artificial materials , 1997 .

[34]  F. Teixeira,et al.  Some remarks on the stability of time-domain electromagnetic simulations , 2004, IEEE Transactions on Antennas and Propagation.

[35]  Thomas Rylander,et al.  Stable FEM-FDTD hybrid method for Maxwell's equations , 2000 .

[36]  Salvatore Caorsi,et al.  Assessment of the performances of first‐ and second‐order time‐domain ABC's for the truncation of finite element grids , 2003 .

[37]  U. Navsariwala,et al.  An unconditionally stable finite element time-domain solution of the vector wave equation , 1995 .

[38]  A. Cangellaris,et al.  A stretched coordinate technique for numerical absorption of evanescent and propagating waves in planar waveguiding structures , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[39]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .