Sc2S@C2(7892)–C70: a metallic sulfide cluster inside a non-IPR C70 cage

A new cage isomer of C70, Sc2S@C2(7892)–C70, has been isolated and characterized by mass spectrometry, UV-Vis-NIR absorption spectroscopy, cyclic voltammetry and DFT calculations. The combined experimental and computational studies lead to the unambiguous assignment of the cage symmetry to C2(7892)–C70. The comparison between Sc2S@C2(7892)–C70 and related endohedral structures has been discussed. A close structural resemblance between Sc2S@C2(7892)–C70 and Sc2S@Cs(10528)–C72 suggests that the conversion of these two molecules may be the result of a simple insertion of C2 and the structural difference between Sc2S@C2(7892)–C70 and Sc3N@C2v(7854)–C70 shows that the nature and geometry of the encaged cluster plays an important role on the selection of the non-IPR cage.

[1]  C. Brabec,et al.  A paradigmatic change: linking fullerenes to electron acceptors. , 2012, Journal of the American Chemical Society.

[2]  D. Guldi,et al.  Sc3N@C80-ferrocene electron-donor/acceptor conjugates as promising materials for photovoltaic applications. , 2008, Angewandte Chemie.

[3]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[4]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[5]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[6]  Steven Stevenson,et al.  The shape of the Sc2(μ2-S) unit trapped in C82: crystallographic, computational, and electrochemical studies of the isomers, Sc2(μ2-S)@C(s)(6)-C82 and Sc2(μ2-S)@C(3v)(8)-C82. , 2011, Journal of the American Chemical Society.

[7]  Kai Tan,et al.  Russian-doll-type metal carbide endofullerene: synthesis, isolation, and characterization of Sc4C2@C80. , 2009, Journal of the American Chemical Society.

[8]  A. Rodríguez‐Fortea,et al.  Electronic structures of scandium oxide endohedral metallofullerenes, Sc(4)(mu(3)-O)(n)@I(h)-C(80) (n = 2, 3). , 2009, Inorganic chemistry.

[9]  W. Krätschmer,et al.  Solid C60: a new form of carbon , 1990, Nature.

[10]  M. Sakata,et al.  A Scandium Carbide Endohedral Metallofullerene: (Sc2 C2 )@C84. , 2001, Angewandte Chemie.

[11]  A. Fisher,et al.  Small-bandgap endohedral metallofullerenes in high yield and purity , 1999, Nature.

[12]  S. Nagase,et al.  Sc2@C70 rather than Sc2C2@C68: density functional theory characterization of metallofullerene Sc2C70. , 2012, The Journal of chemical physics.

[13]  Edward Van Keuren,et al.  Endohedral fullerenes for organic photovoltaic devices. , 2009, Nature materials.

[14]  B. Sitharaman,et al.  Water-soluble gadofullerenes: toward high-relaxivity, pH-responsive MRI contrast agents. , 2005, Journal of the American Chemical Society.

[15]  N. Martín New challenges in fullerene chemistry. , 2006, Chemical communications.

[16]  Marilyn M. Olmstead,et al.  Is the isolated pentagon rule merely a suggestion for endohedral fullerenes? The structure of a second egg-shaped endohedral fullerene--Gd3N@C(s)(39663)-C82. , 2008, Journal of the American Chemical Society.

[17]  Steven Stevenson,et al.  Sc2(mu2-O) trapped in a fullerene cage: the isolation and structural characterization of Sc2(mu2-O)@C(s)6-C82 and the relevance of the thermal and entropic effects in fullerene isomer selection. , 2010, Journal of the American Chemical Society.

[18]  A. Ivaska,et al.  The nature of the charge carriers in polyazulene as studied by in situ electron spin resonance-UV-visible-near-infrared spectroscopy. , 2008, The journal of physical chemistry. B.

[19]  B. Holloway,et al.  Tuning Conversion Efficiency in Metallo Endohedral Fullerene‐Based Organic Photovoltaic Devices , 2009 .

[20]  A. Rodríguez‐Fortea,et al.  The maximum pentagon separation rule provides a guideline for the structures of endohedral metallofullerenes. , 2010, Nature chemistry.

[21]  Marilyn M. Olmstead,et al.  A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. , 2008, Journal of the American Chemical Society.

[22]  Shangfeng Yang,et al.  Endohedral clusterfullerenes--playing with cluster and cage sizes. , 2007, Physical chemistry chemical physics : PCCP.

[23]  S. Nagase,et al.  Semi-metallic single-component crystal of soluble La@C82 derivative with high electron mobility. , 2011, Journal of the American Chemical Society.

[24]  C. Beavers,et al.  A seven atom cluster in a carbon cage, the crystallographically determined structure of Sc4(mu3-O)3@Ih-C80. , 2010, Chemical communications.

[25]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[26]  Lothar Dunsch,et al.  Metal sulfide in a C82 fullerene cage: a new form of endohedral clusterfullerenes. , 2010, Journal of the American Chemical Society.

[27]  Tianming Zuo,et al.  New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84. , 2008, Chemical communications.

[28]  M. Wong,et al.  Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C(60)(OH)(x) and Gd@C(60)[C(COOH(2))](10). , 2005, Journal of the American Chemical Society.

[29]  C. de Graaf,et al.  Electronic structure and redox properties of metal nitride endohedral fullerenes M(3)N@C(2n) (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, 96). , 2009, Chemistry.

[30]  Luis Echegoyen,et al.  Chemical, electrochemical, and structural properties of endohedral metallofullerenes. , 2009, Angewandte Chemie.

[31]  Yusuke Nakanishi,et al.  Closed network growth of fullerenes , 2012, Nature Communications.

[32]  Ning Chen,et al.  Synthesis of a new endohedral fullerene family, Sc2S@C2n (n = 40-50) by the introduction of SO2. , 2010, Chemical communications.

[33]  Ning Chen,et al.  Sc2S@C(s)(10528)-C72: a dimetallic sulfide endohedral fullerene with a non isolated pentagon rule cage. , 2012, Journal of the American Chemical Society.

[34]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[35]  D. Manolopoulos,et al.  An Atlas of Fullerenes , 1995 .

[36]  A. Rodríguez‐Fortea,et al.  Endohedral metallofullerenes: a unique host-guest association. , 2011, Chemical Society reviews.

[37]  Shangfeng Yang,et al.  Metal nitride cluster fullerenes: their current state and future prospects. , 2007, Small.

[38]  Filip Uhlík,et al.  Computing relative stabilities of metallofullerenes by Gibbs energy treatments , 2007 .

[39]  Lothar Dunsch,et al.  Violating the isolated pentagon rule (IPR): the endohedral non-IPR C70 cage of Sc3N@C70. , 2007, Angewandte Chemie.

[40]  Fupin Liu,et al.  Fullerenes encaging metal clusters--clusterfullerenes. , 2011, Chemical communications.

[41]  S. Nagase,et al.  Sc3N@C80: computations on the two-isomer equilibrium at high temperatures. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[42]  Stephan Irle,et al.  Fullerenes: formation, stability, and reactivity , 2011 .

[43]  Chun-ying Shu,et al.  Preparation and characterization of two new water-soluble endohedral metallofullerenes as magnetic resonance imaging contrast agents. , 2007, The journal of physical chemistry. B.

[44]  Guangfu Luo,et al.  Tunable charge-transport properties of I(h)-C80 endohedral metallofullerenes: investigation of La2@C80, Sc3N@C80, and Sc3C2@C80. , 2012, Journal of the American Chemical Society.

[45]  H. Kroto,et al.  The smallest stable fullerene, M@C28 (m = Ti, Zr, U): stabilization and growth from carbon vapor. , 2012, Journal of the American Chemical Society.