Anodization of Highly Ordered TiO2 Nanotube Arrays Using Orthogonal Design and Its Wettability

[1]  Qiufen Tu,et al.  Vascular cell responses to ECM produced by smooth muscle cells on TiO2 nanotubes , 2015 .

[2]  S. Kim,et al.  Investigation of TiO2 nanotubes/nanoparticles stacking sequences to improve power conversion efficiency of dye-sensitized solar cells , 2015 .

[3]  Johns Naduvath,et al.  Mechanism of titania nanograss formation during anodization , 2015 .

[4]  Rong Jin,et al.  Growth of anodic TiO2 nanotubes in mixed electrolytes and novel method to extend nanotube diameter , 2015 .

[5]  Dusan Losic,et al.  Titania nanotube arrays for local drug delivery: recent advances and perspectives , 2015, Expert opinion on drug delivery.

[6]  Liu Cao,et al.  Efficient suppression of nanograss during porous anodic TiO 2 nanotubes growth , 2014 .

[7]  M. Yin,et al.  Enhanced photoelectrochemical water splitting performance of anodic TiO(2) nanotube arrays by surface passivation. , 2014, ACS applied materials & interfaces.

[8]  P. Schmuki,et al.  One-dimensional titanium dioxide nanomaterials: nanotubes. , 2014, Chemical reviews.

[9]  J. Yuan,et al.  Fabrication of Anti-Aging TiO2 Nanotubes on Biomedical Ti Alloys , 2014, PloS one.

[10]  C. Bowen,et al.  A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes , 2013 .

[11]  Yanhong Zhang,et al.  Time dependence of growth and crystallization of anodic titanium oxide films in potentiostatic mode , 2013 .

[12]  Sepideh Minagar,et al.  Cell response of anodized nanotubes on titanium and titanium alloys. , 2013, Journal of biomedical materials research. Part A.

[13]  Shui-Tong Lee,et al.  Selective removal of the outer shells of anodic TiO2 nanotubes. , 2013, Small.

[14]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[15]  P. Schmuki,et al.  Self‐organized TiO2 nanotubes: Factors affecting their morphology and properties , 2010 .

[16]  L. Schmidt‐Mende,et al.  Influence of anodisation voltage on the dimension of titania nanotubes , 2010 .

[17]  Tahlia L. Weis,et al.  Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells. , 2010, Biomaterials.

[18]  G. Thompson,et al.  Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes , 2009 .

[19]  P. Schmuki,et al.  TiO2 Nanotubes: Efficient Suppression of Top Etching during Anodic Growth Key to Improved High Aspect Ratio Geometries , 2009 .

[20]  K. Hebert,et al.  The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. , 2009, Nature materials.

[21]  Huadong Yu,et al.  Oxygen evolution and porous anodic alumina formation , 2008 .

[22]  Longtu Li,et al.  Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization , 2008 .

[23]  Jinsub Choi,et al.  Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model. , 2007, Small.

[24]  G. Thompson,et al.  A flow model of porous anodic film growth on aluminium , 2006 .

[25]  Patrik Schmuki,et al.  High-aspect-ratio TiO2 nanotubes by anodization of titanium. , 2005, Angewandte Chemie.

[26]  Shaoyu Zhang,et al.  Formation Mechanism of Gaps and Ribs Around Anodic TiO2 Nanotubes and Method to Avoid Formation of Ribs , 2015 .

[27]  Shaoyu Zhang,et al.  Forming Process of Anodic TiO2 Nanotubes under a Preformed Compact Surface Layer , 2014 .

[28]  Patrik Schmuki,et al.  Influence of Water Content on the Growth of Anodic TiO2 Nanotubes in Fluoride-Containing Ethylene Glycol Electrolytes , 2010 .