Tailoring Surface Codes for Highly Biased Noise
暂无分享,去创建一个
Christopher T. Chubb | Steven T. Flammia | Stephen D. Bartlett | Sergey Bravyi | David K. Tuckett | Andrew S. Darmawan | S. Flammia | S. Bartlett | S. Bravyi | David K Tuckett
[1] Gorjan Alagic,et al. #p , 2019, Quantum information & computation.
[2] Martin Suchara,et al. Efficient Algorithms for Maximum Likelihood Decoding in the Surface Code , 2014, 1405.4883.
[3] J. T. Chalker,et al. Two-dimensional random-bond Ising model, free fermions, and the network model , 2002 .
[4] S. J. Devitt,et al. Asymmetric quantum error correction via code conversion , 2007, 0708.3969.
[5] Kristopher L. Kuhlman,et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic , 2017 .
[6] James R. Wootton,et al. Incoherent dynamics in the toric code subject to disorder , 2011, 1112.1613.
[7] Stephen D. Bartlett,et al. Tailored codes for small quantum memories , 2017, 1703.08179.
[8] Travis E. Oliphant,et al. Guide to NumPy , 2015 .
[9] Aaas News,et al. Book Reviews , 1893, Buffalo Medical and Surgical Journal.
[10] Hector Bombin,et al. Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .
[11] M. Rötteler,et al. Asymmetric quantum codes: constructions, bounds and performance , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[12] John Preskill,et al. Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.
[13] D. Poulin,et al. Reducing the overhead for quantum computation when noise is biased , 2015, 1509.05032.
[14] H. Bombin,et al. Topological quantum distillation. , 2006, Physical review letters.
[15] Kae Nemoto,et al. High-threshold topological quantum error correction against biased noise , 2013, 1308.4776.
[16] Stephen D Bartlett,et al. Ultrahigh Error Threshold for Surface Codes with Biased Noise. , 2017, Physical review letters.
[17] Helmut G. Katzgraber,et al. Strong resilience of topological codes to depolarization , 2012, 1202.1852.
[18] Helmut G Katzgraber,et al. Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.
[19] G. L. Guardia. On the Construction of Asymmetric Quantum Codes , 2014 .
[20] David Poulin,et al. Generalized surface codes and packing of logical qubits , 2016, ArXiv.
[21] B. Terhal. Quantum error correction for quantum memories , 2013, 1302.3428.
[22] Steven T. Flammia,et al. Fault-Tolerant Thresholds for the Surface Code in Excess of 5% under Biased Noise. , 2019, Physical review letters.
[23] Benjamin J. Brown,et al. The role of entropy in topological quantum error correction , 2018, Journal of Statistical Mechanics: Theory and Experiment.
[24] John Preskill,et al. Fault-tolerant quantum computation with asymmetric Bacon-Shor codes , 2012, 1211.1400.
[25] John Preskill,et al. Fault-tolerant quantum computation against biased noise , 2007, 0710.1301.
[26] R. Blatt,et al. Quantum computations on a topologically encoded qubit , 2014, Science.
[27] A. Kitaev,et al. Quantum codes on a lattice with boundary , 1998, quant-ph/9811052.
[28] M. Mézard,et al. Asymmetric quantum error-correcting codes , 2006, quant-ph/0606107.
[29] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[30] John Preskill,et al. Optimal Bacon-Shor codes , 2012, Quantum Inf. Comput..
[31] W. Hager,et al. and s , 2019, Shallow Water Hydraulics.
[32] David Poulin,et al. Linear-time general decoding algorithm for the surface code. , 2018, Physical review. E.
[33] Fernando Pastawski,et al. Unfolding the color code , 2015, 1503.02065.
[34] A. Yacoby,et al. Demonstration of Entanglement of Electrostatically Coupled Singlet-Triplet Qubits , 2012, Science.
[35] J. Preskill,et al. Topological quantum memory , 2001, quant-ph/0110143.
[36] Qi Zhao,et al. High-Threshold Code for Modular Hardware With Asymmetric Noise , 2018, Physical Review Applied.
[37] J. Preskill,et al. Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.
[38] Kenneth R. Brown,et al. 2D Compass Codes , 2018, Physical Review X.