Thermodynamics of Yukawa systems and sound velocity in dusty plasmas

The simple practical approaches to estimate thermodynamic properties of three-dimensional Yukawa systems across coupling regimes (in fluid and solid phases) are summarized. These approaches demonstrate very good accuracy when compared with the results of direct numerical simulations. To demonstrate possible applications, the sound velocity in a strongly coupled dusty plasma is evaluated by combining the conventional fluid description of multi-component plasma with the appropriate equation of state of Yukawa fluids. Limitations of the proposed approaches are briefly discussed.

[1]  S. Khrapak,et al.  On the internal energy of the classical two-dimensional one-component-plasma , 2015 .

[2]  S. Yurchenko,et al.  Pair correlations in classical crystals: The shortest-graph method. , 2015, The Journal of chemical physics.

[3]  H. Thomas,et al.  Thermodynamics of Yukawa fluids near the one-component-plasma limit , 2015, 1507.00659.

[4]  S. Yurchenko,et al.  Practical thermodynamics of Yukawa systems at strong coupling. , 2015, The Journal of chemical physics.

[5]  H. Thomas,et al.  Approximate expression for the electric potential around an absorbing particle in isotropic collisionless plasma , 2015 .

[6]  S. Khrapak,et al.  On the lower bound of the internal energy of the one-component-plasma , 2015 .

[7]  H. Thomas,et al.  Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  M. Sperl,et al.  Glass transition of charged particles in two-dimensional confinement. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  H. Thomas,et al.  Practical expressions for the internal energy and pressure of Yukawa fluids. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  R. Merlino 25 years of dust acoustic waves , 2014 .

[11]  T. Schrøder,et al.  Explaining why simple liquids are quasi-universal , 2014, Nature Communications.

[12]  S. Ratynskaia,et al.  Soft mean spherical approximation for dusty plasma liquids: One-component Yukawa systems with plasma shielding. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Khrapak,et al.  Simple thermodynamics of strongly coupled one-component-plasma in two and three dimensions , 2014 .

[14]  A. Ivlev,et al.  Ion sphere model for Yukawa systems (dusty plasmas) , 2014, 1410.2059.

[15]  M. Sperl,et al.  Glass-transition properties of Yukawa potentials: from charged point particles to hard spheres. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  S. Yurchenko The shortest-graph method for calculation of the pair-correlation function in crystalline systems. , 2014, The Journal of chemical physics.

[17]  G. Morfill,et al.  Simple estimation of thermodynamic properties of Yukawa systems. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  P. Hartmann,et al.  Effect of strong coupling on the dust acoustic instability. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  I. Hutchinson,et al.  Collisional effects on nonlinear ion drag force for small grains , 2013, 1305.6944.

[20]  T. Schrøder,et al.  Communication: The Rosenfeld-Tarazona expression for liquids' specific heat: a numerical investigation of eighteen systems. , 2013, The Journal of chemical physics.

[21]  Gregor E. Morfill,et al.  Complex Plasmas and Colloidal Dispersions: Particle-Resolved Studies of Classical Liquids and Solids , 2012 .

[22]  S. Khrapak,et al.  Application of phenomenological freezing and melting indicators to the exp-6 and Gaussian core potentials , 2011 .

[23]  I. Krivtsun,et al.  A study of dust grain screening in a weakly ionized plasma based on the numerical solution of the Vlasov-Bhatnagar-Gross-Krook kinetic equations , 2011 .

[24]  P. Shukla,et al.  Anomalous dust temperature in dusty plasma experiments , 2011 .

[25]  G. Morfill,et al.  Communication: Universality of the melting curves for a wide range of interaction potentials. , 2011, The Journal of chemical physics.

[26]  G. Morfill,et al.  Freezing of Lennard-Jones-type fluids. , 2011, The Journal of chemical physics.

[27]  G. Morfill,et al.  Complex plasma—the plasma state of soft matter , 2010 .

[28]  V. Fortov,et al.  Thermodynamic and transport properties of nonideal systems with isotropic pair potentials. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  G. Morfill,et al.  Effect of strong electrostatic interactions of microparticles on the dust acoustic waves , 2010 .

[30]  G. Morfill,et al.  Liquid-solid phase transition in the Lennard-Jones system , 2010 .

[31]  H. Löwen,et al.  Kinetics of fluid demixing in complex plasmas: role of two-scale interactions. , 2010, Physical review letters.

[32]  G. Morfill,et al.  Multiple phase transitions associated with charge cannibalism effect in complex (dusty) plasmas , 2010 .

[33]  G. Morfill,et al.  Shielding of a test charge: Role of plasma production and loss balance , 2010 .

[34]  G. Morfill,et al.  Predicting freezing for some repulsive potentials. , 2009, Physical review letters.

[35]  S. Khrapak,et al.  Basic Processes in Complex (Dusty) Plasmas: Charging, Interactions, and Ion Drag Force , 2009 .

[36]  Z. Donkó,et al.  Dynamical correlations and collective excitations of Yukawa liquids , 2008, 0808.1963.

[37]  H. Totsuji Thermodynamics of strongly coupled repulsive Yukawa particles in ambient neutralizing plasma: Thermodynamic instability and the possibility of observation in fine particle plasmas , 2008 .

[38]  G. Morfill,et al.  Electric potential around an absorbing body in plasmas: effect of ion-neutral collisions. , 2008, Physical review letters.

[39]  G. Salin Hydrodynamic limit of the Yukawa one-component plasma , 2007 .

[40]  Gregor E. Morfill,et al.  Complex (dusty) plasmas: current status, open issues, perspectives , 2005 .

[41]  G. Faussurier Description of strongly coupled Yukawa fluids using the variational modified hypernetted chain approach. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[42]  Stefano Mossa,et al.  Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. , 2003, Physical review letters.

[43]  Valeriy V. Gavrishchaka,et al.  Trapped ion effect on shielding, current flow, and charging of a small object in a plasma , 2003 .

[44]  G. Morfill,et al.  Universal scaling in complex (dusty) plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  S. Hamaguchi,et al.  Waves in strongly-coupled classical one-component plasmas and Yukawa fluids , 2001 .

[46]  Rosenfeld Excess-entropy and freezing-temperature scalings for transport coefficients: self-diffusion in yukawa systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  J. Caillol,et al.  Monte Carlo Simulations of the Yukawa One-Component Plasma , 2000 .

[48]  V. A. Sinel’shchikov,et al.  On the charge of dust particles in a low-pressure gas discharge plasma , 2000 .

[49]  H. Dewitt,et al.  Collective modes in strongly correlated yukawa liquids: waves in dusty plasmas. , 2000, Physical review letters.

[50]  S. Hamaguchi,et al.  Wave dispersion relations in Yukawa fluids. , 2000, Physical review letters.

[51]  J. Allen,et al.  On the orbital motion limited theory for a small body at floating potential in a Maxwellian plasma , 2000 .

[52]  S. Khrapak,et al.  Scaling law for the fluid-solid phase transition in Yukawa systems (dusty plasmas) , 2000 .

[53]  G. Kalman,et al.  Quasilocalized charge approximation in strongly coupled plasma physics , 2000 .

[54]  T. M. O'Neil,et al.  Trapped nonneutral plasmas, liquids, and crystals (the thermal equilibrium states) , 1999 .

[55]  P. Tarazona,et al.  Density functional theory and the asymptotic high density expansion of the free energy of classical solids and fluids , 1998 .

[56]  R. Farouki,et al.  Triple point of Yukawa systems , 1997 .

[57]  R. Farouki,et al.  Phase diagram of Yukawa systems near the one-component-plasma limit revisited , 1996 .

[58]  D. Kofke,et al.  Thermodynamic and structural properties of model systems at solid-fluid coexistence: I. Fcc and bcc soft spheres , 1995 .

[59]  R. Merlino,et al.  Charging of dust grains in a plasma. , 1994, Physical review letters.

[60]  R. Farouki,et al.  Thermodynamics of strongly‐coupled Yukawa systems near the one‐component‐plasma limit. I. Derivation of the excess energy , 1994 .

[61]  R. Farouki,et al.  Thermodynamics of strongly‐coupled Yukawa systems near the one‐component‐plasma limit. II. Molecular dynamics simulations , 1994 .

[62]  David B. Graves,et al.  Sheath structure around particles in low-pressure discharges , 1992 .

[63]  Tejero,et al.  Thermodynamic properties of the fluid, fcc, and bcc phases of monodisperse charge-stabilized colloidal suspensions within the Yukawa model. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[64]  D. Frenkel,et al.  Melting line of Yukawa system by computer simulation , 1991 .

[65]  N. N. Rao,et al.  DUST -ACOUSTIC WAVES IN DUSTY PLASMAS , 1990 .

[66]  Stringfellow,et al.  Equation of state of the one-component plasma derived from precision Monte Carlo calculations. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[67]  G. Grest,et al.  Phase diagram and dynamics of Yukawa systems , 1988 .

[68]  Gregor E. Morfill,et al.  Plasma potential and grain charges in a dust cloud embedded in a plasma , 1984 .

[69]  S. Nordholm Simple analysis of the thermodynamic properties of the one-component plasma , 1984 .

[70]  Y. Rosenfeld Universality of melting and freezing indicators and additivity of melting curves , 1976 .

[71]  Y. Rosenfeld Alternative derivation of the melting equations for the simple systems , 1976 .

[72]  Keith W. Johnson,et al.  Thermodynamic Properties of the Fluid and Solid Phases for Inverse Power Potentials , 1971 .

[73]  M. Ross,et al.  Generalized Lindemann Melting Law , 1969 .