Regularization with Metric Double Integrals of Functions with Values in a Set of Vectors

[1]  Gabriele Steidl,et al.  Priors with Coupled First and Second Order Differences for Manifold-Valued Image Processing , 2017, Journal of Mathematical Imaging and Vision.

[2]  Mila Nikolova,et al.  A Nonlocal Denoising Algorithm for Manifold-Valued Images Using Second Order Statistics , 2016, SIAM J. Imaging Sci..

[3]  Jianguo Liu,et al.  Image Processing and GIS for Remote Sensing: Techniques and Applications , 2016 .

[4]  Norbert Pfeifer,et al.  Quantification of Overnight Movement of Birch (Betula pendula) Branches and Foliage with Short Interval Terrestrial Laser Scanning , 2016, Front. Plant Sci..

[5]  Gabriele Steidl,et al.  A Parallel Douglas-Rachford Algorithm for Minimizing ROF-like Functionals on Images with Values in Symmetric Hadamard Manifolds , 2015, SIAM J. Imaging Sci..

[6]  Gabriele Steidl,et al.  A Parallel Douglas Rachford Algorithm for Restoring Images with Values in Symmetric Hadamard Manifolds , 2015 .

[7]  Gabriele Steidl,et al.  A Second Order Nonsmooth Variational Model for Restoring Manifold-Valued Images , 2015, SIAM J. Sci. Comput..

[8]  R. Chan,et al.  Restoration of Manifold-Valued Images by Half-Quadratic Minimization , 2015, 1505.07029.

[9]  R. Anderssen,et al.  How is FLC repression initiated by cold? , 2015, Trends in plant science.

[10]  Ronny Bergmann,et al.  A Second-Order TV-Type Approach for Inpainting and Denoising Higher Dimensional Combined Cyclic and Vector Space Data , 2015, Journal of Mathematical Imaging and Vision.

[11]  Philipp Grohs,et al.  Total Variation Regularization by Iteratively Reweighted Least Squares on Hadamard Spaces and the Sphere , 2014 .

[12]  Ronny Bergmann,et al.  Inpainting of Cyclic Data Using First and Second Order Differences , 2014, EMMCVPR.

[13]  Gabriele Steidl,et al.  Second Order Differences of Cyclic Data and Applications in Variational Denoising , 2014, SIAM J. Imaging Sci..

[14]  Andreas Weinmann,et al.  Total Variation Regularization for Manifold-Valued Data , 2013, SIAM J. Imaging Sci..

[15]  Daniel Cremers,et al.  Total Variation Regularization for Functions with Values in a Manifold , 2013, 2013 IEEE International Conference on Computer Vision.

[16]  Daniel Cremers,et al.  Total Cyclic Variation and Generalizations , 2013, Journal of Mathematical Imaging and Vision.

[17]  Amit Singer,et al.  Orientation Determination of Cryo-EM Images Using Least Unsquared Deviations , 2012, SIAM J. Imaging Sci..

[18]  Yoel Shkolnisky,et al.  Viewing Direction Estimation in Cryo-EM Using Synchronization , 2012, SIAM J. Imaging Sci..

[19]  Valdemar Melicher,et al.  Mixed Tikhonov regularization in Banach spaces based on domain decomposition , 2012, Appl. Math. Comput..

[20]  Barbara Kaltenbacher,et al.  Regularization Methods in Banach Spaces , 2012, Radon Series on Computational and Applied Mathematics.

[21]  V. Kolehmainen,et al.  Sparsity-promoting Bayesian inversion , 2012 .

[22]  F. Demengel,et al.  Functional Spaces for the Theory of Elliptic Partial Differential Equations , 2012 .

[23]  Daniel Cremers,et al.  Total variation for cyclic structures: Convex relaxation and efficient minimization , 2011, CVPR 2011.

[24]  Heinz H. Bauschke,et al.  Fixed-Point Algorithms for Inverse Problems in Science and Engineering , 2011, Springer Optimization and Its Applications.

[25]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[26]  A. Singer,et al.  Representation theoretic patterns in three dimensional Cryo-Electron Microscopy I: The intrinsic reconstitution algorithm. , 2009, Annals of mathematics.

[27]  Jianguo Liu,et al.  Essential Image Processing and GIS for Remote Sensing , 2009 .

[28]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[29]  Pierre Kornprobst,et al.  Can the Nonlocal Characterization of Sobolev Spaces by Bourgain et al. Be Useful for Solving Variational Problems? , 2009, SIAM J. Numer. Anal..

[30]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[31]  Otmar Scherzer,et al.  Variational Methods in Imaging , 2008, Applied mathematical sciences.

[32]  D. Lorenz,et al.  Optimal convergence rates for Tikhonov regularization in Besov scales , 2008, 0806.0951.

[33]  R. Anderssen,et al.  Joint additive Kullback–Leibler residual minimization and regularization for linear inverse problems , 2007 .

[34]  S. Osher,et al.  Decomposition of images by the anisotropic Rudin‐Osher‐Fatemi model , 2004 .

[35]  Augusto C. Ponce,et al.  A new approach to Sobolev spaces and connections to $\mathbf\Gamma$-convergence , 2004 .

[36]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[37]  J. Dávila On an open question about functions of bounded variation , 2002 .

[38]  Ron Kimmel,et al.  Orientation Diffusion or How to Comb a Porcupine , 2002, J. Vis. Commun. Image Represent..

[39]  Ronald F. Gariepy FUNCTIONS OF BOUNDED VARIATION AND FREE DISCONTINUITY PROBLEMS (Oxford Mathematical Monographs) , 2001 .

[40]  K. Plataniotis,et al.  Color Image Processing and Applications , 2000 .

[41]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[42]  P. Lions,et al.  Image recovery via total variation minimization and related problems , 1997 .

[43]  P. P. B. Eggermont,et al.  Maximum entropy regularization for Fredholm integral equations of the first kind , 1993 .

[44]  Heinz W. Engl,et al.  Convergence rates for maximum entropy regularization , 1993 .

[45]  Ken D. Sauer,et al.  A generalized Gaussian image model for edge-preserving MAP estimation , 1993, IEEE Trans. Image Process..

[46]  M. Giaquinta,et al.  Variational problems for maps of bounded variation with values inS1 , 1993 .

[47]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[48]  Bernard Dacorogna,et al.  Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals , 1982 .

[49]  D. Werner,et al.  Maß- und Integrationstheorie , 2009 .

[50]  G. Burton Sobolev Spaces , 2013 .

[51]  Otmar Scherzer,et al.  Non-Local Functionals for Imaging , 2011, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[52]  Cédric Villani,et al.  Optimal Transport and Curvature , 2011 .

[53]  C. Villani,et al.  Nonlinear PDE’s and Applications , 2011 .

[54]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[55]  M. Giaquinta,et al.  Maps of Bounded Variation with Values into a Manifold: Total Variation and Relaxed Energy , 2007 .

[56]  M. Giaquinta,et al.  The BV-energy of maps into a manifold: relaxation and density results , 2006 .

[57]  J. Bourgain,et al.  Another look at Sobolev spaces , 2001 .

[58]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[59]  Petru Mironescu,et al.  Lifting in Sobolev spaces , 2000 .

[60]  Curtis R. Vogel,et al.  Iterative Methods for Total Variation Denoising , 1996, SIAM J. Sci. Comput..

[61]  B. Dacorogna Direct methods in the calculus of variations , 1989 .

[62]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[63]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .