Nanoscale nucleosome dynamics assessed with time-lapse AFM

[1]  Takeharu Nagai,et al.  Local nucleosome dynamics facilitate chromatin accessibility in living mammalian cells. , 2012, Cell reports.

[2]  Leo Gross,et al.  Bond-Order Discrimination by Atomic Force Microscopy , 2012, Science.

[3]  Y. Lyubchenko AFM Imaging in Liquid of DNA and Protein–DNA Complexes , 2012 .

[4]  Joan-Ramon Daban,et al.  Electron microscopy and atomic force microscopy studies of chromatin and metaphase chromosome structure. , 2011, Micron.

[5]  Y. Lyubchenko,et al.  Structure and Dynamics of Dinucleosomes Assessed by Atomic Force Microscopy , 2011, Journal of amino acids.

[6]  T. Ando,et al.  Dynamics of nucleosomes assessed with time-lapse high-speed atomic force microscopy. , 2011, Biochemistry.

[7]  T. Ando,et al.  Imaging of Nucleic Acids with Atomic Force Microscopy , 1990 .

[8]  Y. Lyubchenko Preparation of DNA and nucleoprotein samples for AFM imaging. , 2011, Micron.

[9]  K. Yoshikawa,et al.  Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. , 2010, Ultramicroscopy.

[10]  B. Maier-Davis,et al.  Mechanism of chromatin remodeling , 2010, Proceedings of the National Academy of Sciences.

[11]  Y. Lyubchenko,et al.  Dynamics of nucleosomes revealed by time-lapse atomic force microscopy. , 2009, Biochemistry.

[12]  E. Segal,et al.  What controls nucleosome positions? , 2009, Trends in genetics : TIG.

[13]  Y. Lyubchenko,et al.  AFM for analysis of structure and dynamics of DNA and protein-DNA complexes. , 2009, Methods.

[14]  B. Cairns,et al.  Chromatin remodeling: insights and intrigue from single-molecule studies , 2007, Nature Structural &Molecular Biology.

[15]  T. Schmidt,et al.  Single-Pair FRET Microscopy Reveals Mononucleosome Dynamics , 2007, Journal of Fluorescence.

[16]  J. Langowski,et al.  Organisation of nucleosomal arrays reconstituted with repetitive African green monkey α-satellite DNA as analysed by atomic force microscopy , 2007, European Biophysics Journal.

[17]  J. Widom,et al.  Stopped-flow fluorescence resonance energy transfer for analysis of nucleosome dynamics. , 2007, Methods.

[18]  C. Wada,et al.  Atomic Force Microscopy Dissects the Hierarchy of Genome Architectures in Eukaryote, Prokaryote, and Chloroplast , 2007, Microscopy and Microanalysis.

[19]  Y. Lyubchenko,et al.  Effect of DNA supercoiling on the geometry of holliday junctions. , 2006, Biochemistry.

[20]  F. Thoma,et al.  Rapid accessibility of nucleosomal DNA in yeast on a second time scale , 2006, The EMBO journal.

[21]  Bradley R. Cairns,et al.  Chromatin remodelling: the industrial revolution of DNA around histones , 2006, Nature Reviews Molecular Cell Biology.

[22]  Louise Fairall,et al.  EM measurements define the dimensions of the "30-nm" chromatin fiber: evidence for a compact, interdigitated structure. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  F. Thoma Repair of UV lesions in nucleosomes--intrinsic properties and remodeling. , 2005, DNA repair.

[24]  Nahum Shiffeldrim,et al.  Cyclization of short DNA fragments and bending fluctuations of the double helix. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Karolin Luger,et al.  Nucleosome and chromatin fiber dynamics. , 2005, Current opinion in structural biology.

[26]  J. Greve,et al.  Unexpected binding motifs for subnucleosomal particles revealed by atomic force microscopy. , 2004, Biophysical journal.

[27]  J. Widom,et al.  Nucleosomes facilitate their own invasion , 2004, Nature Structural &Molecular Biology.

[28]  Yuri L Lyubchenko,et al.  Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. , 2003, Ultramicroscopy.

[29]  Steven Henikoff,et al.  Epigenetic Consequences of Nucleosome Dynamics , 2002, Cell.

[30]  J. Widom,et al.  Spontaneous Access of Proteins to Buried Nucleosomal DNA Target Sites Occurs via a Mechanism That Is Distinct from Nucleosome Translocation , 2002, Molecular and Cellular Biology.

[31]  D. Lohr,et al.  Mapping nucleosome locations on the 208-12 by AFM provides clear evidence for cooperativity in array occupation. , 2002, Biochemistry.

[32]  J. Zlatanova,et al.  The archaeal histone-fold protein HMf organizes DNA into bona fide chromatin fibers. , 2001, Structure.

[33]  J. Zlatanova,et al.  DNA methylation‐dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[34]  D. Lohr,et al.  Evidence for nonrandom behavior in 208-12 subsaturated nucleosomal array populations analyzed by AFM. , 1999, Biochemistry.

[35]  T. Richmond,et al.  Crystal structure of the nucleosome core particle at 2.8 Å resolution , 1997, Nature.

[36]  Y. Lyubchenko,et al.  Visualization of supercoiled DNA with atomic force microscopy in situ. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Dubochet,et al.  Chromatin conformation and salt-induced compaction: three-dimensional structural information from cryoelectron microscopy , 1995, The Journal of cell biology.

[38]  K. V. van Holde,et al.  Three-dimensional structure of extended chromatin fibers as revealed by tapping-mode scanning force microscopy. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Hegner,et al.  Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions , 1993, FEBS letters.

[40]  J. Gatewood,et al.  Atomic force microscope measurements of nucleosome cores assembled along defined DNA sequences. , 1993, Biochemistry.

[41]  V. Elings,et al.  Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy , 1993 .

[42]  G. Binnig,et al.  True Atomic Resolution by Atomic Force Microscopy Through Repulsive and Attractive Forces , 1993, Science.

[43]  Y. Lyubchenko,et al.  Atomic force microscopy imaging of double stranded DNA and RNA. , 1992, Journal of biomolecular structure & dynamics.

[44]  Y. Lyubchenko,et al.  Atomic force microscopy of reovirus dsRNA: a routine technique for length measurements. , 1992, Nucleic acids research.

[45]  C. Bustamante,et al.  Substrate preparation for reliable imaging of DNA molecules with the scanning force microscope. , 1992, Ultramicroscopy.

[46]  Z. Shao,et al.  Atomic force microscopy of DNA molecules , 1992, FEBS letters.

[47]  C. Bustamante,et al.  Circular DNA molecules imaged in air by scanning force microscopy. , 1992, Biochemistry.

[48]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[49]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[50]  P. Chambon,et al.  Electron microscopic and biochemical evidence that chromatin structure is a repeating unit , 1975, Cell.

[51]  R. Kornberg Chromatin structure: a repeating unit of histones and DNA. , 1974, Science.

[52]  Donald E. Olins,et al.  Spheroid Chromatin Units (ν Bodies) , 1974, Science.

[53]  Y. Lyubchenko,et al.  Nucleosomes structure and dynamics: effect of CHAPS. , 2011, International journal of biochemistry and molecular biology.

[54]  T. Ando,et al.  High-speed atomic force microscopy and biomolecular processes. , 2011, Methods in molecular biology.

[55]  S. Yoshimura,et al.  Atomic force microscopy demonstrates a critical role of DNA superhelicity in nucleosome dynamics , 2007, Cell Biochemistry and Biophysics.

[56]  T. Ohtani,et al.  Comparative structural biology of the genome: nano-scale imaging of single nucleus from different kingdoms reveals the common physicochemical property of chromatin with a 40 nm structural unit. , 2006, Journal of electron microscopy.

[57]  C. Bustamante,et al.  Rapid spontaneous accessibility of nucleosomal DNA , 2005, Nature Structural &Molecular Biology.

[58]  Y. Lyubchenko,et al.  DNA Recombination: Holliday Junctions Dynamics and Branch Migration , 2003 .

[59]  Y. Lyubchenko,et al.  Atomic force microscopy of DNA and protein-DNA complexes using functionalized mica substrates. , 2001, Methods in molecular biology.

[60]  T. Richmond,et al.  Preparation of nucleosome core particle from recombinant histones. , 1999, Methods in enzymology.

[61]  C. Bustamante,et al.  Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. , 1996, Annual review of biophysics and biomolecular structure.

[62]  F. Thoma,et al.  Electron microscopy of chromatin. , 1989, Methods in enzymology.

[63]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[64]  C. Woodcock,et al.  Structural repeating units in chromatin. I. Evidence for their general occurrence. , 1976, Experimental cell research.

[65]  D. E. Olins,et al.  Spheroid chromatin units (v bodies). , 1974, Science.