Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human

[1]  G. Dong,et al.  Interaction between the flagellar pocket collar and the hook complex via a novel microtubule-binding protein in Trypanosoma brucei , 2017, PLoS pathogens.

[2]  Shenmin Yang,et al.  DNAH1 gene mutations and their potential association with dysplasia of the sperm fibrous sheath and infertility in the Han Chinese population. , 2017, Fertility and sterility.

[3]  Thomas Karaouzene,et al.  SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes , 2017, EMBO molecular medicine.

[4]  X. Wang,et al.  Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese , 2017, Clinical genetics.

[5]  M. Mitchell,et al.  Genetic abnormalities leading to qualitative defects of sperm morphology or function , 2017, Clinical genetics.

[6]  P. Courtois,et al.  Correction: Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model , 2017, PLoS neglected tropical diseases.

[7]  M. Sabbaghian,et al.  Whole-exome sequencing of familial cases of multiple morphological abnormalities of the sperm flagella (MMAF) reveals new DNAH1 mutations. , 2016, Human reproduction.

[8]  S. Daulouède,et al.  Trypanosoma brucei CYP51: Essentiality and Targeting Therapy in an Experimental Model , 2016, PLoS neglected tropical diseases.

[9]  Benoît Vanderperre,et al.  MPC1-like Is a Placental Mammal-specific Mitochondrial Pyruvate Carrier Subunit Expressed in Postmeiotic Male Germ Cells* , 2016, The Journal of Biological Chemistry.

[10]  S. Brouillet,et al.  Patients with multiple morphological abnormalities of the sperm flagella due to DNAH1 mutations have a good prognosis following intracytoplasmic sperm injection. , 2016, Human reproduction.

[11]  F. Cunningham,et al.  The Ensembl Variant Effect Predictor , 2016, Genome Biology.

[12]  C. Coutton,et al.  Male Infertility: Genetics, Mechanism, and Therapies , 2016, BioMed research international.

[13]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[14]  P. Ray,et al.  Teratozoospermia: spotlight on the main genetic actors in the human. , 2015, Human reproduction update.

[15]  N. Katsanis,et al.  Unique among ciliopathies: primary ciliary dyskinesia, a motile cilia disorder , 2015, F1000prime reports.

[16]  P. Ray,et al.  Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. , 2015, Molecular human reproduction.

[17]  K. Gull,et al.  A toolkit enabling efficient, scalable and reproducible gene tagging in trypanosomatids , 2015, Open Biology.

[18]  Feng Zhang,et al.  Genome engineering using CRISPR-Cas9 system. , 2015, Methods in molecular biology.

[19]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[20]  K. Hill,et al.  Motility and more: the flagellum of Trypanosoma brucei , 2014, Nature Reviews Microbiology.

[21]  W. Marshall,et al.  FAP20 is an inner junction protein of doublet microtubules essential for both the planar asymmetrical waveform and stability of flagella in Chlamydomonas , 2014, Molecular biology of the cell.

[22]  P. Bastin,et al.  The GTPase IFT27 is involved in both anterograde and retrograde intraflagellar transport , 2014, eLife.

[23]  J. Chamot-Rooke,et al.  Proteomic Analysis of Intact Flagella of Procyclic Trypanosoma brucei Cells Identifies Novel Flagellar Proteins with Unique Sub-localization and Dynamics* , 2014, Molecular & Cellular Proteomics.

[24]  N. Thierry-Mieg,et al.  Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. , 2014, American journal of human genetics.

[25]  B. Morga,et al.  Getting to the heart of intraflagellar transport using Trypanosoma and Chlamydomonas models: the strength is in their differences , 2013, Cilia.

[26]  Gianluca Pollastri,et al.  Porter, PaleAle 4.0: high-accuracy prediction of protein secondary structure and relative solvent accessibility , 2013, Bioinform..

[27]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[28]  D. Nicastro,et al.  One of the Nine Doublet Microtubules of Eukaryotic Flagella Exhibits Unique and Partially Conserved Structures , 2012, PloS one.

[29]  P. ’. ‘t Hoen,et al.  Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues , 2012, PloS one.

[30]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[31]  L. Ostrowski,et al.  Cilia and models for studying structure and function. , 2011, Proceedings of the American Thoracic Society.

[32]  W. Chiu,et al.  Structure of Trypanosoma brucei flagellum accounts for its bihelical motion , 2011, Proceedings of the National Academy of Sciences.

[33]  K. Hill,et al.  Structure-Function Analysis of Dynein Light Chain 1 Identifies Viable Motility Mutants in Bloodstream-Form Trypanosoma brucei , 2011, Eukaryotic Cell.

[34]  P. Bastin,et al.  1001 model organisms to study cilia and flagella , 2011, Biology of the cell.

[35]  M. Boshart,et al.  Selection of reference genes for mRNA quantification in Trypanosoma brucei. , 2010, Molecular and biochemical parasitology.

[36]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[37]  Eileen Kraemer,et al.  TriTrypDB: a functional genomic resource for the Trypanosomatidae , 2009, Nucleic Acids Res..

[38]  Wei Yan Male infertility caused by spermiogenic defects: Lessons from gene knockouts , 2009, Molecular and Cellular Endocrinology.

[39]  Cyrus Chothia,et al.  SUPERFAMILY—sophisticated comparative genomics, data mining, visualization and phylogeny , 2008, Nucleic Acids Res..

[40]  S. Henikoff,et al.  Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm , 2009, Nature Protocols.

[41]  Temple F. Smith,et al.  Diversity of WD-repeat proteins. , 2008, Sub-cellular biochemistry.

[42]  M. Oberholzer,et al.  Trypanosomes and mammalian sperm: one of a kind? , 2007, Trends in parasitology.

[43]  K. Hill,et al.  Functional genomics in Trypanosoma brucei identifies evolutionarily conserved components of motile flagella , 2007, Journal of Cell Science.

[44]  K. Gull,et al.  Flagellar motility is required for the viability of the bloodstream trypanosome , 2006, Nature.

[45]  S. Kunz,et al.  A vector series for rapid PCR-mediated C-terminal in situ tagging of Trypanosoma brucei genes. , 2006, Molecular and biochemical parasitology.

[46]  K. Gull,et al.  Protein targeting of an unusual, evolutionarily conserved adenylate kinase to a eukaryotic flagellum. , 2004, Molecular biology of the cell.

[47]  J. Donelson,et al.  Trypanosoma brucei FLA1 Is Required for Flagellum Attachment and Cytokinesis* , 2002, The Journal of Biological Chemistry.

[48]  P. Lefebvre,et al.  Assembly and motility of eukaryotic cilia and flagella. Lessons from Chlamydomonas reinhardtii. , 2001, Plant physiology.

[49]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[50]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[51]  B. Habermann,et al.  Disruption of an inner arm dynein heavy chain gene results in asthenozoospermia and reduced ciliary beat frequency. , 2001, Human molecular genetics.

[52]  L. Ruben,et al.  Calmodulin-binding properties of the paraflagellar rod complex from Trypanosoma brucei. , 2000, Molecular and biochemical parasitology.

[53]  G. Cross,et al.  Trypanosoma brucei , 1998 .

[54]  N. Osterrieder,et al.  Lessons from gene knockouts. , 1998, Revue scientifique et technique.

[55]  K. Gull,et al.  Paraflagellar rod is vital for trypanosome motility , 1998, Nature.

[56]  K. Gull,et al.  A motility function for the paraflagellar rod of Leishmania parasites revealed by PFR-2 gene knockouts. , 1997, Molecular and biochemical parasitology.

[57]  K. Gull,et al.  A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. , 1996, Molecular and biochemical parasitology.

[58]  A G Murzin,et al.  SCOP: a structural classification of proteins database for the investigation of sequences and structures. , 1995, Journal of molecular biology.

[59]  C. Lindemann,et al.  The flagellar beat of rat sperm is organized by the interaction of two functionally distinct populations of dynein bridges with a stable central axonemal partition. , 1992, Journal of cell science.

[60]  K. Gull,et al.  Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. , 1989, Journal of cell science.

[61]  K. Gull,et al.  The cell division cycle of Trypanosoma brucei brucei: timing of event markers and cytoskeletal modulations. , 1989, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  W. de Souza,et al.  The paraxial structure of the flagellum of trypanosomatidae. , 1980, The Journal of parasitology.

[63]  D. Fawcett The mammalian spermatozoon. , 1975, Developmental biology.

[64]  B. Afzelius Electron Microscopy of the Sperm Tail Results Obtained with a New Fixative , 1959, The Journal of biophysical and biochemical cytology.