마이크로데이터 공표를 위한 통계적 노출제어 방법론 고찰

학술 연구나 정책 입안 등을 위한 심층적 자료 활용의 확대는 동시에 개별 정보 노출에 대한 염려도 증가시킨다. 때문에 최근 이십여 년 간 통계적 노출제어(정보보호) 분야에서 많은 논문들이 발표되었다. 본 논문은 그러한 연구 내용들을 정리하여 국내 통계인들과 기관들에게 소개하고자 한다. 주요 내용으로 국소통합이나 잡음추가와 같은 전통적인 매스킹 기법 뿐만 아니라, 온라인 자료 분석 시스템에서의 정보보호 처리, 차등정보보호를 통한 노출제어 및 재현자료를 활용한 정보보호 대안 모색에 대해 다룬다. 또한 각각의 주제에 대한 방법론 소개와 함께 활용 사례 및 장단점을 논의하였다. 본 논문이 실제적인 통계적 노출제어 문제를 고민하는 통계인들에게 도움이 되기를 바란다.