Implementing the Baumslag-Cannonito-Miller Polycyclic Quotient Algorithm

This paper discusses the practical problems associated with developing a computerimplementation of an algorithm described by Baumslag, Cannonito, and Miller for computing polycyclic quotients of a finitely presented group. Attention is drawn to the connection with the method of Grobner bases and techniques for computing nilpotent quotients. Some experimentation with computing class-2 nilpotent quotients and metabelian polycyclic quotients is described.

[1]  Fred Richman,et al.  Constructive aspects of Noetherian rings , 1974 .

[2]  J. W. Wamsley Computing soluble groups , 1977 .

[3]  Frank B. Cannonito,et al.  Computable algebra and group embeddings , 1981 .

[4]  Bruno Buchberger,et al.  A critical-pair/completion algorithm for finitely generated ideals in rings , 1983, Logic and Machines.

[5]  Leslie E. Trotter,et al.  Hermite Normal Form Computation Using Modulo Determinant Arithmetic , 1987, Math. Oper. Res..

[6]  Frank B. Cannonito,et al.  Some recognizable properties of solvable groups , 1981 .

[7]  Bruno Buchberger,et al.  Algorithm 628: An algorithm for constructing canonical bases of polynomial ideals , 1985, TOMS.

[8]  B. Buchberger An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[9]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[10]  Charles C. Sims Verifying Nilpotence , 1987, J. Symb. Comput..

[11]  N. S. Romanovskii Some algorithmic problems for solvable groups , 1974 .

[12]  Wilhelm Plesken,et al.  Towards a Soluble Quotient Algorithm , 1987, J. Symb. Comput..

[13]  J. R. Howse,et al.  Groups – St Andrews 1981: An algorithm for the second derived factor group , 1982 .

[14]  George Havas,et al.  Integer matrices and Abelian groups (invited) , 1979, EUROSAM.

[15]  Franz Winkler,et al.  A p-Adic Approach to the Computation of Gröbner Bases , 1988, J. Symb. Comput..

[16]  Bruno Buchberger,et al.  Applications of Gro¨bner bases in non-linear computational geometry , 1988 .

[17]  R. Lyndon,et al.  Free Differential Calculus, IV. The Quotient Groups of the Lower Central Series , 1958 .