Brain barriers and functional interfaces with sequential appearance of ABC efflux transporters during human development

[1]  P. Colditz,et al.  Review: The blood-brain barrier; protecting the developing fetal brain. , 2017, Placenta.

[2]  N. Saunders,et al.  The biological significance of brain barrier mechanisms: help or hindrance in drug delivery to the central nervous system? , 2016, F1000Research.

[3]  J. Ghersi-Egea,et al.  Correction: Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach , 2016, PLoS ONE.

[4]  P. Pasinelli,et al.  Regulation of ABC efflux transporters at blood-brain barrier in health and neurological disorders , 2015, Brain Research.

[5]  J. Meeker,et al.  Phthalate metabolites and bisphenol-A in association with circulating angiogenic biomarkers across pregnancy. , 2015, Placenta.

[6]  D. Miller,et al.  Regulation of ABC transporters at the blood–brain barrier , 2015, Clinical pharmacology and therapeutics.

[7]  K. Møllgård,et al.  Outer brain barriers in rat and human development , 2015, Front. Neurosci..

[8]  S. Liddelow,et al.  The inner CSF–brain barrier: developmentally controlled access to the brain via intercellular junctions , 2015, Front. Neurosci..

[9]  J. Ghersi-Egea,et al.  Efflux transporters in blood-brain interfaces of the developing brain , 2015, Front. Neurosci..

[10]  Norman R. Saunders,et al.  The rights and wrongs of blood-brain barrier permeability studies: a walk through 100 years of history , 2014, Front. Neurosci..

[11]  G. Koren,et al.  P-glycoprotein in the Developing Human Brain: A Review of the Effects of Ontogeny on the Safety of Opioids in Neonates , 2014, Therapeutic drug monitoring.

[12]  J. Garcia-Fernández,et al.  Embryonic blood-cerebrospinal fluid barrier formation and function , 2014, Front. Neurosci..

[13]  L. Larsen,et al.  Brain Barriers and a Subpopulation of Astroglial Progenitors of Developing Human Forebrain Are Immunostained for the Glycoprotein YKL-40 , 2014, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[14]  J. Ghersi-Egea,et al.  Developmental changes in the transcriptome of the rat choroid plexus in relation to neuroprotection , 2013, Fluids and Barriers of the CNS.

[15]  J. Ghersi-Egea,et al.  Mechanisms That Determine the Internal Environment of the Developing Brain: A Transcriptomic, Functional and Ultrastructural Approach , 2013, PloS one.

[16]  S. Liddelow,et al.  Transporters of the blood-brain and blood-CSF interfaces in development and in the adult. , 2013, Molecular aspects of medicine.

[17]  Norman R. Saunders,et al.  Barrier Mechanisms in the Developing Brain , 2012, Front. Pharmacol..

[18]  S. Liddelow,et al.  Efflux mechanisms at the developing brain barriers: ABC-transporters in the fetal and postnatal rat. , 2010, Toxicology letters.

[19]  C. Raybaud Normal and abnormal embryology and development of the intracranial vascular system. , 2010, Neurosurgery clinics of North America.

[20]  H. Okano,et al.  ABCB1 is predominantly expressed in human fetal neural stem/progenitor cells at an early development stage , 2009, Journal of neuroscience research.

[21]  R. Mean,et al.  Generation of an ABCG2(GFPn-puro) transgenic line--a tool to study ABCG2 expression in mice. , 2009, Biochemical and biophysical research communications.

[22]  Vasilis Vasiliou,et al.  Human ATP-binding cassette (ABC) transporter family , 2009, Human Genomics.

[23]  J. Ghersi-Egea,et al.  Differential expression of the multidrug resistance‐related proteins ABCb1 and ABCc1 between blood‐brain interfaces , 2008, The Journal of comparative neurology.

[24]  J. Watchko,et al.  ABC Transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) Expression in the Developing Human CNS , 2008, Neuropediatrics.

[25]  P. Bhide,et al.  Angiogenesis in the embryonic CNS , 2008, Cell adhesion & migration.

[26]  J. Rubenstein,et al.  Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain , 2008, Nature Neuroscience.

[27]  S. Liddelow,et al.  The blood–CSF barrier explained: when development is not immaturity , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[28]  Y. Yonekawa,et al.  Fetal Blood-Brain Barrier P-Glycoprotein Contributes to Brain Protection During Human Development , 2008, Journal of neuropathology and experimental neurology.

[29]  P. Landrigan,et al.  Developmental neurotoxicity of industrial chemicals , 2006, The Lancet.

[30]  Nir Shavit,et al.  Combining funnels: a new twist on an old tale… , 1998, PODC '98.

[31]  U. Schumacher,et al.  The multidrug-resistance P-glycoprotein (Pgp, MDR1) is an early marker of blood-brain barrier development in the microvessels of the developing human brain , 1997, Histochemistry and Cell Biology.

[32]  G. Giaccone,et al.  Multidrug resistance gene (P-glycoprotein) expression in the human fetus. , 1992, American Journal of Pathology.

[33]  M. Melamed,et al.  Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. , 1990, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[34]  B. Lauritzen,et al.  Cell junctions and membrane specializations in the ventricular zone (germinal matrix) of the developing sheep brain: A CSF-brain barrier , 1987, Journal of neurocytology.

[35]  R. O'rahilly,et al.  The Meninges in Human Development , 1986, Journal of neuropathology and experimental neurology.

[36]  N. Saunders,et al.  THE DEVELOPMENT OF THE HUMAN BLOOD‐BRAIN AND BLOOD‐CSF BARRIERS , 1986, Neuropathology and applied neurobiology.

[37]  N. Saunders,et al.  CSF-brain permeability in the immature sheep fetus: a CSF-brain barrier. , 1985, Brain research.

[38]  M. Jacobsen,et al.  Immunohistochemical identification of some plasma proteins in human embryonic and fetal forebrain with particular reference to the development of the neocortex. , 1984, Brain research.

[39]  G. Jacobsen,et al.  Intracellular plasma proteins in human fetal choroid plexus during development. II. The distribution of prealbumin, albumin, alpha-fetoprotein, transferrin, IgG, IgA, IgM, and alpha 1-antitrypsin. , 1982, Brain research.

[40]  H. J. Gamble,et al.  Light and electron microscopic observations on the development of the blood vascular system of the human brain. , 1979, Journal of anatomy.

[41]  D. Gitlin NORMAL BIOLOGY OF α‐FETOPROTEIN , 1975 .

[42]  D. J. Reed,et al.  Active transport of sodium and potassium by the choroid plexus of the rat , 1974, The Journal of physiology.

[43]  D. Gitlin,et al.  Development of γG, γA, γM, β1C/β1A, C′1 esterase inhibitor, ceruloplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, α1-antitrypsin, orosomucoid, β-lipoprotein, α2-macroglobulin, and prealbumin in the human conceptus , 1969 .

[44]  T. Reese,et al.  JUNCTIONS BETWEEN INTIMATELY APPOSED CELL MEMBRANES IN THE VERTEBRATE BRAIN , 1969, The Journal of cell biology.

[45]  F. P. Mall,et al.  On the Development of the blood-vessels of the brain in the human embryo , 1905 .

[46]  David S. Miller ABC Transporters at the Blood–Brain Barrier , 2013 .

[47]  M. Gottesman,et al.  Is the multidrug transporter a flippase? , 1992, Trends in biochemical sciences.

[48]  G. Greenberg,et al.  Drugs in Pregnancy and Lactation , 1990 .

[49]  D. Gitlin Normal biology of alpha-fetoprotein. , 1975, Annals of the New York Academy of Sciences.

[50]  S. Duckett The establishment of internal vascularization in the human telencephalon. , 1971, Acta anatomica.

[51]  D. Gitlin,et al.  Development of gamma G, gamma A, gamma M, beta IC-beta IA, C 1 esterase inhibitor, ceruloplasmin, transferrin, hemopexin, haptoglobin, fibrinogen, plasminogen, alpha 1-antitrypsin, orosomucoid, beta-lipoprotein, alpha 2-macroglobulin, and prealbumin in the human conceptus. , 1969, The Journal of clinical investigation.

[52]  D. H. Padget,et al.  The development of the cranial arteries in the human embryo. , 1948 .