Mesoscale GPS tomography applied to the 12 June 2002 convective initiation event of IHOP_2002

The time‐varying three‐dimensional water vapour field derived from mesoscale Global Positioning System (GPS) tomography data is used to describe the water vapour variability in relation to the dynamics of the atmosphere during convective initiation (CI). The paper presents the theoretical framework of GPS tomography at the mesoscale, including aspects related to the assimilation of independent data (e.g. water vapour profiles issued from meteorological balloon soundings). GPS tomography‐derived water vapour density retrievals are validated against lidar, the Atmospheric Emitted Radiance Interferometer and radiosonde data, even if the short three‐day period of the study prevents conclusions about the real accuracy of the GPS tomography technique.

[1]  O. Bock,et al.  Diurnal Cycle of Water Vapor as Documented by a Dense GPS Network in a Coastal Area during ESCOMPTE IOP2 , 2007 .

[2]  E. Rasmussen,et al.  Observations of Convection Initiation “Failure” from the 12 June 2002 IHOP Deployment , 2006 .

[3]  C. Flamant,et al.  An Observational Study of Convection Initiation on 12 June 2002 during IHOP_2002 , 2005 .

[4]  Evelyne Richard,et al.  Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP , 2005 .

[5]  David M. Schultz,et al.  The Use of Moisture Flux Convergence in Forecasting Convective Initiation: Historical and Operational Perspectives , 2005 .

[6]  O. Bock,et al.  On the use of GPS tomography to investigate water vapor variability during a Mistral/sea breeze event in southeastern France , 2005 .

[7]  Marie-Noëlle Bouin,et al.  GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment , 2005 .

[8]  G. Deblonde,et al.  Evaluation of GPS precipitable water over canada and the IGS network , 2005 .

[9]  Andrea Walpersdorf,et al.  GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Cévennes (southern France) , 2004 .

[10]  J. Michael Fritsch,et al.  Improving quantitative precipitation forecasts in the warm season: A USWRP research and development strategy , 2004 .

[11]  Barry E. Schwartz,et al.  Rapid retrieval and assimilation of ground based GPS precipitable water observations at the NOAA Forecast Systems Laboratory: Impact on weather forecasts , 2004 .

[12]  Ryuichi Ichikawa,et al.  Tsukuba GPS Dense Net Campaign Observation: Improvement in GPS Analysis of Slant Path Delay by Stacking One-way Postfit Phase Residuals , 2004 .

[13]  Rita D. Roberts,et al.  Summary of Convective Storm Initiation and Evolution during IHOP: Observational and Modeling Perspective , 2004 .

[14]  Henrik Vedel,et al.  Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean , 2003 .

[15]  William L. Smith,et al.  Near-Continuous Profiling of Temperature, Moisture, and Atmospheric Stability Using the Atmospheric Emitted Radiance Interferometer (AERI) , 2003 .

[16]  Christian Rocken,et al.  Comparisons of Line-of-Sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer , 2003 .

[17]  E. Doerflinger,et al.  La campagne IHOP 2002: une campagne de mesure de la vapeur d'eau dans la couche limite , 2003 .

[18]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[19]  Steven E. Koch,et al.  An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights , 2004 .

[20]  V. Ducrocq,et al.  Storm-Scale Numerical Rainfall Prediction for Five Precipitating Events over France: On the Importance of the Initial Humidity Field , 2002 .

[21]  David Carlson,et al.  Corrections of Humidity Measurement Errors from the Vaisala RS80 Radiosonde—Application to TOGA COARE Data , 2002 .

[22]  Alexander E. MacDonald,et al.  Diagnosis of Three-Dimensional Water Vapor Using a GPS Network , 2002 .

[23]  Frederic Masson,et al.  Data analysis of a dense GPS network operated during the ESCOMPTE campaign: first results , 2002 .

[24]  Richard B. Langley,et al.  Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI , 2001 .

[25]  Christian Rocken,et al.  Validation of line‐of‐sight water vapor measurements with GPS , 2001 .

[26]  Per Jarlemark,et al.  Spatial error correlation of GPS atmospheres as determined from simulations , 2001 .

[27]  Tammy M. Weckwerth,et al.  The Effect of Small-Scale Moisture Variability on Thunderstorm Initiation , 2000 .

[28]  Hajime Nakamura,et al.  Three-dimensional distribution of water vapor estimated from tropospheric delay of GPS data in a mesoscale precipitation system of the Baiu front , 2000 .

[29]  David D. Turner,et al.  Continuous Water Vapor Profiles from Operational Ground-Based Active and Passive Remote Sensors , 2000 .

[30]  T. Emardson,et al.  On the relation between the wet delay and the integrated precipitable water vapour in the European atmosphere , 2000 .

[31]  G. Ruffini,et al.  4D tropospheric tomography using GPS slant wet delays , 2000 .

[32]  Volker Wulfmeyer,et al.  NCAR–NOAA Lower-Tropospheric Water Vapor Workshop , 1999 .

[33]  David D. Turner,et al.  Twenty-Four-Hour Raman Lidar Water Vapor Measurements during the Atmospheric Radiation Measurement Program’s 1996 and 1997 Water Vapor Intensive Observation Periods , 1999 .

[34]  Erik N. Rasmussen,et al.  The Initiation of Moist Convection at the Dryline: Forecasting Issues from aCase Study Perspective , 1998 .

[35]  William L. Smith,et al.  Meteorological Applications of Temperature and Water Vapor Retrievals from the Ground-Based Atmospheric Emitted Radiance Interferometer (AERI) , 1998 .

[36]  J. Goldsmith,et al.  Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. , 1997, Applied optics.

[37]  Thomas A. Herring,et al.  Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data , 1997 .

[38]  S. Koch,et al.  The Influence of Mesoscale Humidity and Evapotranspiration Fields on a Model Forecast of a Cold-Frontal Squall Line , 1997 .

[39]  Christian Rocken,et al.  Sensing integrated water vapor along GPS ray paths , 1997 .

[40]  A. Niell Global mapping functions for the atmosphere delay at radio wavelengths , 1996 .

[41]  Walter F. Dabberdt,et al.  Research Opportunities from Emerging Atmospheric Observing and Modeling Capabilities , 1996 .

[42]  C. Chouinard,et al.  Numerical Forecasts of Explosive Winter Storms: Sensitivity Experiments with a Meso‐α scale Model , 1989 .

[43]  R. S. Bell,et al.  The sensitivity of fine-mesh rainfall and cloud forecasts to the initial specification of humidity , 1989 .

[44]  James W. Wilson,et al.  Initiation of Convective Storms at Radar-Observed Boundary-Layer Convergence Lines , 1986 .

[45]  I. Shapiro,et al.  Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length , 1985 .

[46]  K. Emanuel A Similarity Theory for Unsaturated Downdrafts within Clouds , 1981 .

[47]  D. Perkey A Description and Preliminary Results from a Fine-Mesh Model for Forecasting Quantitative Precipitation , 1976 .

[48]  James F. W. Purdom,et al.  Some Uses of High-Resolution GOES Imagery in the Mesoscale Forecasting of Convection and Its Behavior , 1976 .

[49]  J. Owen A Study of Thunderstorm Formation Along Dry Lines , 1966 .

[50]  S. Barnes,et al.  A Technique for Maximizing Details in Numerical Weather Map Analysis , 1964 .