Limit theorems for random sets: An application of probability in banach space results

[1]  Dan A. Ralescu,et al.  Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .

[2]  Wolfgang Weil,et al.  An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .

[3]  D. Aldous The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .

[4]  E. Giné Sums of independent random variables and sums of their squares , 1980 .

[5]  Gilles Pisier,et al.  Some applications of the complex interpolation method to Banach lattices , 1979 .

[6]  N. Cressie A central limit theorem for random sets , 1979 .

[7]  J. Zinn,et al.  On the limit theorems for random variables with values in the spaces Lp (2≦p<∞) , 1978 .

[8]  Noel A Cressie,et al.  Strong limit-theorem for random sets , 1978 .

[9]  Charles L. Byrne,et al.  Remarks on the set-valued integrals of Debreu and Aumann , 1978 .

[10]  E. Giné Bounds for the speed of convergence in the central limit theorem in C(S) , 1976 .

[11]  G. Matheron Random Sets and Integral Geometry , 1976 .

[12]  Z. Artstein,et al.  A Strong Law of Large Numbers for Random Compact Sets , 1975 .

[13]  Michael B. Marcus,et al.  Central limit theorems for C(S)-valued random variables , 1975 .

[14]  Y. Gordon,et al.  Relations between some constants associated with finite dimensional Banach spaces , 1971 .

[15]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[16]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[17]  G. Debreu Integration of correspondences , 1967 .

[18]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[19]  Boris Mityagin,et al.  APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES , 1961 .

[20]  L. Hörmander Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .

[21]  H. Bergström On the central limit theorem , 1944 .

[22]  H. Robbins On the Measure of a Random Set , 1944 .