Limit theorems for random sets: An application of probability in banach space results
暂无分享,去创建一个
[1] Dan A. Ralescu,et al. Strong Law of Large Numbers for Banach Space Valued Random Sets , 1983 .
[2] Wolfgang Weil,et al. An application of the central limit theorem for banach-space-valued random variables to the theory of random sets , 1982 .
[3] D. Aldous. The Central Limit Theorem for Real and Banach Valued Random Variables , 1981 .
[4] E. Giné. Sums of independent random variables and sums of their squares , 1980 .
[5] Gilles Pisier,et al. Some applications of the complex interpolation method to Banach lattices , 1979 .
[6] N. Cressie. A central limit theorem for random sets , 1979 .
[7] J. Zinn,et al. On the limit theorems for random variables with values in the spaces Lp (2≦p<∞) , 1978 .
[8] Noel A Cressie,et al. Strong limit-theorem for random sets , 1978 .
[9] Charles L. Byrne,et al. Remarks on the set-valued integrals of Debreu and Aumann , 1978 .
[10] E. Giné. Bounds for the speed of convergence in the central limit theorem in C(S) , 1976 .
[11] G. Matheron. Random Sets and Integral Geometry , 1976 .
[12] Z. Artstein,et al. A Strong Law of Large Numbers for Random Compact Sets , 1975 .
[13] Michael B. Marcus,et al. Central limit theorems for C(S)-valued random variables , 1975 .
[14] Y. Gordon,et al. Relations between some constants associated with finite dimensional Banach spaces , 1971 .
[15] K. Arrow,et al. General Competitive Analysis , 1971 .
[16] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[17] G. Debreu. Integration of correspondences , 1967 .
[18] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[19] Boris Mityagin,et al. APPROXIMATE DIMENSION AND BASES IN NUCLEAR SPACES , 1961 .
[20] L. Hörmander. Sur la fonction d’appui des ensembles convexes dans un espace localement convexe , 1955 .
[21] H. Bergström. On the central limit theorem , 1944 .
[22] H. Robbins. On the Measure of a Random Set , 1944 .