Binary additive MRD codes with minimum distance $$n-1$$n-1 must contain a semifield spread set

In this paper we prove a result on the structure of the elements of an additive maximum rank distance (MRD) code over the field of order two, namely that in some cases such codes must contain a semifield spread set. We use this result to classify additive MRD codes in $$M_n(\mathbb {F}_2)$$Mn(F2) with minimum distance $$n-1$$n-1 for $$n\le 6$$n≤6. Furthermore we present a computational classification of additive MRD codes in $$M_4(\mathbb {F}_3)$$M4(F3). The computational evidence indicates that MRD codes of minimum distance $$n-1$$n-1 are much more rare than MRD codes of minimum distance n, i.e. semifield spread sets. In all considered cases, each equivalence class has a known algebraic construction.

[1]  John Sheekey,et al.  New semifields and new MRD codes from skew polynomial rings , 2018, Journal of the London Mathematical Society.

[2]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[3]  Arthur Reifart The classification of the translation planes of order 16, II , 1983 .

[4]  Aiden A. Bruen,et al.  Collineations and extensions of translation nets , 1975 .

[5]  Yue Zhou,et al.  A New Family of MRD Codes in $\mathbb{F_q}^{2n\times2n}$ With Right and Middle Nuclei $\mathbb F_{q^n}$ , 2017, IEEE Transactions on Information Theory.

[6]  Giuseppe Marino,et al.  Non-linear maximum rank distance codes , 2016, Des. Codes Cryptogr..

[7]  José Ranilla,et al.  New advances in the computational exploration of semifields , 2011, Int. J. Comput. Math..

[8]  John Sheekey,et al.  Classification of subspaces in $${{\mathbb{F}}^2\otimes {\mathbb{F}}^3}$$F2⊗F3 and orbits in $${{\mathbb{F}}^2\otimes{\mathbb{F}}^3 \otimes {\mathbb{F}}^r}$$F2⊗F3⊗Fr , 2015, 1503.07894.

[9]  José Ranilla,et al.  Determination of division algebras with 243 elements , 2010, Finite Fields Their Appl..

[10]  Yue Zhou,et al.  On the number of inequivalent MRD codes , 2017, ArXiv.

[11]  A. Siciliano,et al.  Puncturing maximum rank distance codes , 2018, Journal of Algebraic Combinatorics.

[12]  Michel Lavrauw,et al.  Finite semifields and nonsingular tensors , 2013, Des. Codes Cryptogr..

[13]  Rocco Trombetti,et al.  Generalized Twisted Gabidulin Codes , 2015, J. Comb. Theory A.

[14]  Alfred Wassermann,et al.  Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6 , 2019, Des. Codes Cryptogr..

[15]  John Sheekey,et al.  Subspaces of matrices with special rank properties , 2010 .

[16]  D. Knuth Finite semifields and projective planes , 1965 .

[17]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[18]  Sascha Kurz,et al.  Classification of large partial plane spreads in $${{\,\mathrm{PG}\,}}(6,2)$$PG(6,2) and related combinatorial objects , 2018, Journal of Geometry.

[19]  Yue Zhou,et al.  On the number of inequivalent Gabidulin codes , 2017, Designs, Codes and Cryptography.

[20]  Alfred Wassermann,et al.  Algebraic structures of MRD codes , 2015, Adv. Math. Commun..

[21]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[22]  Giampaolo Menichetti On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .

[23]  José Ranilla,et al.  Classification of semifields of order 64 , 2009 .

[24]  Natalia Silberstein,et al.  Codes and designs related to lifted MRD codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[25]  Semifield Planes of Order 81 , 2008 .

[26]  José Ranilla,et al.  Finite semifields with 74 elements , 2012, Int. J. Comput. Math..

[27]  Olga Polverino,et al.  MRD codes with maximum idealizers , 2020, Discret. Math..

[28]  Giuseppe Marino,et al.  On the nuclei of a finite semifield , 2011, 1111.3217.

[29]  Giuseppe Marino,et al.  A new family of MRD-codes , 2017, Linear Algebra and its Applications.

[30]  Ferruh Özbudak,et al.  Additive Rank Metric Codes , 2017, IEEE Transactions on Information Theory.

[31]  Antonio Cossidente,et al.  Subspace Codes in PG(2N − 1, Q) , 2014, Combinatorica.

[32]  John Sheekey,et al.  A new family of linear maximum rank distance codes , 2015, Adv. Math. Commun..

[33]  U. Dempwolff,et al.  The classification of the translation planes of order 16, I , 1983 .

[34]  Giuseppe Marino,et al.  Maximum rank-distance codes with maximum left and right idealisers. , 2018, 1807.08774.

[35]  Ernst M. Gabidulin,et al.  The new construction of rank codes , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[36]  Giuseppe Marino,et al.  New maximum scattered linear sets of the projective line , 2017, Finite Fields Their Appl..