New Families of Wrapped Distributions for Modeling Skew Circular Data

Abstract We discuss circular distributions obtained by wrapping the classical exponential and Laplace distributions on the real line around the circle. We present explicit forms for their densities and distribution functions, as well as their trigonometric moments and related parameters, and discuss main properties of these laws. Both distributions are very promising as models for asymmetric directional data.

[1]  S. Rao Jammalamadaka,et al.  Inference for wrapped symmetric α-stable circular models , 2003 .

[2]  S. R. Jammalamadaka,et al.  Topics in Circular Statistics , 2001 .

[3]  Samuel Kotz,et al.  The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Economics, Engineering, and Finance , 2001 .

[4]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[5]  J. N. Kapur Maximum-entropy models in science and engineering , 1992 .

[6]  K. Mardia Statistics of Directional Data , 1972 .

[7]  B. Heller Circular Statistics in Biology, Edward Batschelet. Academic Press, London & New York (1981), 371, Price $69.50 , 1983 .

[8]  Claudio Agostinelli,et al.  circular: Circular Statistics, from "Topics in circular Statistics" (2001) S. Rao Jammalamadaka and A. SenGupta, World Scientific. , 2004 .

[9]  Nicholas I. Fisher,et al.  Statistical Analysis of Circular Data , 1993 .

[10]  Marvin Zelen,et al.  Mathematical Theory of Reliability , 1965 .

[11]  S. Rao Jammalamadaka,et al.  A New Family of Circular Models : The Wrapped Laplace Distributions , 2003 .

[12]  Arthur Pewsey,et al.  Testing circular symmetry , 2002 .

[13]  Paul Levy,et al.  L'addition des variables aléatoires définies sur une circonférence , 1939 .

[14]  K. Schmidt-Koenig Über die Orientierung der Vögel; Experimente und Probleme , 2004, Naturwissenschaften.

[15]  Rudolf Jander,et al.  Die optische Richtungsorientierung der Roten Waldameise (Formica Ruea L.) , 1957, Zeitschrift für vergleichende Physiologie.