Examination of l-Glutamic Acid Polymorphs by Solid-State Density Functional Theory and Terahertz Spectroscopy.

The ability of l-glutamic acid to crystallize in two different forms has long been the subject of study due to its commercial importance. While a solvent-mediated phase transformation between the α and β polymorphs is the prevailing theory, recent reports indicate a thermal solid-solid transformation between the two may be possible. However, determining accurate thermodynamic stabilities of these crystals has been challenging. Here new low-temperature single-crystal X-ray diffraction data coupled to solid-state density functional theory simulations have enabled a detailed description to be achieved for the energetic parameters governing the stabilization of the two l-glutamic acid solids. The temperature-dependent Gibbs free-energy curves show that α-glutamic acid is the preferred form at low temperatures (<222 K) and the β form is most stable at ambient temperatures. Terahertz time-domain spectroscopy was utilized to evaluate the quality of the intermolecular force modeling as well as to provide characteristic low-frequency spectral data that can be used for quantification of polymorph mixtures or crystal growth monitoring.

[1]  T. Korter,et al.  Measuring the Elasticity of Poly‐l‐Proline Helices with Terahertz Spectroscopy , 2016, Angewandte Chemie.

[2]  T. Korter,et al.  The crucial role of water in shaping low-barrier hydrogen bonds. , 2016, Physical chemistry chemical physics : PCCP.

[3]  T. Korter,et al.  Evaluation of Range-Corrected Density Functionals for the Simulation of Pyridinium-Containing Molecular Crystals. , 2016, The journal of physical chemistry. A.

[4]  B. Civalleri,et al.  Thermal properties of molecular crystals through dispersion-corrected quasi-harmonic ab initio calculations: the case of urea. , 2016, Chemical communications.

[5]  R. Orlando,et al.  CRYSTAL14: A program for the ab initio investigation of crystalline solids , 2014 .

[6]  I. G. Moorthy,et al.  Production of L-glutamic Acid with Corynebacterium glutamicum (NCIM 2168) and Pseudomonas reptilivora (NCIM 2598): A Study on Immobilization and Reusability , 2014, Avicenna journal of medical biotechnology.

[7]  B. Grabowski,et al.  Breakdown of the Arrhenius Law in Describing Vacancy Formation Energies , 2014 .

[8]  Shane Z. Sullivan,et al.  Kinetic Trapping of Metastable Amino Acid Polymorphs , 2014, Journal of the American Chemical Society.

[9]  Michael Rusin,et al.  The glycine-stimulated nucleation and solution-mediated polymorphic transformation of L-glutamic acid , 2013 .

[10]  J. Ulrich,et al.  Integration of Process Analytical Technology Tools in Pilot-Plant Setups for the Real-Time Monitoring of Crystallizations and Phase Transitions , 2013 .

[11]  T. Korter,et al.  Understanding the Origins of Conformational Disorder in the Crystalline Polymorphs of Irbesartan , 2012 .

[12]  B. Xue,et al.  Glutamic Acid Adsorption and Transformations on Silica , 2011 .

[13]  Stefan Grimme,et al.  Effect of the damping function in dispersion corrected density functional theory , 2011, J. Comput. Chem..

[14]  William D. Buchanan,et al.  Identification and quantification of polymorphism in the pharmaceutical compound diclofenac acid by terahertz spectroscopy and solid-state density functional theory. , 2011, Analytical chemistry.

[15]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[16]  A. West,et al.  Phase transformations of glutamic acid and its decomposition products , 2010 .

[17]  J. Corver,et al.  Terahertz spectroscopy to identify the polymorphs in freeze-dried Mannitol. , 2010, Journal of pharmaceutical sciences.

[18]  C. Sano History of glutamate production. , 2009, The American journal of clinical nutrition.

[19]  R. Braatz,et al.  Selective Crystallization of the Metastable α-Form of l-Glutamic Acid using Concentration Feedback Control , 2009 .

[20]  Kodo Kawase,et al.  Extremely frequency-widened terahertz wave generation using Cherenkov-type radiation. , 2009 .

[21]  Enrico Drioli,et al.  Effect of Supersaturation Control and Heterogeneous Nucleation on Porous Membrane Surfaces in the Crystallization of l-Glutamic Acid Polymorphs , 2009 .

[22]  Marco Mazzotti,et al.  Experimental Characterization and Population Balance Modeling of the Polymorph Transformation of l-Glutamic Acid , 2009 .

[23]  B. Fischer,et al.  The Christiansen effect in terahertz time-domain spectra of coarse-grained powders , 2008 .

[24]  Jerzy Leszczynski,et al.  Theoretical calculations: Can Gibbs free energy for intermolecular complexes be predicted efficiently and accurately? , 2007, J. Comput. Chem..

[25]  P. Taday,et al.  Terahertz pulsed spectroscopy and imaging in the pharmaceutical setting ‐ a review , 2007, The Journal of pharmacy and pharmacology.

[26]  M. Mazzotti,et al.  In Situ Monitoring and Modeling of the Solvent-Mediated Polymorphic Transformation of l-Glutamic Acid , 2006 .

[27]  Chiko Otani,et al.  Efficient generation of Cherenkov-type terahertz radiation from a lithium niobate crystal with a silicon prism output coupler , 2006 .

[28]  C. Balagopalan,et al.  Optimisation of glutamic acid production from cassava starch factory residues using Brevibacterium divaricatum , 2005 .

[29]  W. Leuchtenberger,et al.  Biotechnological production of amino acids and derivatives: current status and prospects , 2005, Applied Microbiology and Biotechnology.

[30]  P. Taday,et al.  Using terahertz pulsed spectroscopy to quantify pharmaceutical polymorphism and crystallinity. , 2005, Journal of pharmaceutical sciences.

[31]  B. K. Hodnett,et al.  Effect of Amino Acid Additives on the Crystallization of l-Glutamic Acid , 2005 .

[32]  M. Kitamura Controlling Factors and Mechanism of Polymorphic Crystallization , 2004 .

[33]  Roger J. Davey,et al.  Solution-mediated transformation of α to β L-glutamic acid: Rate enhancement due to secondary nucleation , 2004 .

[34]  Addison Ault,et al.  The Monosodium Glutamate Story: The Commercial Production of MSG and Other Amino Acids , 2004 .

[35]  M Pepper,et al.  Using Terahertz pulse spectroscopy to study the crystalline structure of a drug: a case study of the polymorphs of ranitidine hydrochloride. , 2003, Journal of pharmaceutical sciences.

[36]  Benjamin K. Hodnett,et al.  Secondary nucleation of the β-polymorph of L-glutamic acid on the surface of α-form crystals , 2003 .

[37]  In Situ Measurement of Particle Size during the Crystallization of l-Glutamic Acid under Two Polymorphic Forms: Influence of Crystal Habit on Ultrasonic Attenuation Measurements , 2002 .

[38]  T. Hahn International tables for crystallography , 2002 .

[39]  R. Dovesi,et al.  Polarization properties of ZnO and BeO: An ab initio study through the Berry phase and Wannier functions approaches , 2001 .

[40]  J. Lyman,et al.  Thermochemical Properties of Si2F6 and SiF4 in Gas and Condensed Phases , 2001 .

[41]  M. Tani,et al.  Detection of up to 20 THz with a low-temperature-grown GaAs photoconductive antenna gated with 15 fs light pulses , 2000 .

[42]  Almantas Galvanauskas,et al.  Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate , 2000 .

[43]  J. B. Stark,et al.  Coherent terahertz radiation detection: Direct comparison between free-space electro-optic sampling and antenna detection , 1998 .

[44]  M. Kitamura Morphological Change Mechanism of α-L-Glutamic Acid with Inclusion ofL-Phenylalanine , 1997 .

[45]  N. Garti,et al.  The effect of surfactants on the crystallization and polymorphic transformation of glutamic acid , 1997 .

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  George M. Sheldrick,et al.  SADABS, Program for Empirical Absorption Correction of Area Detector Data , 1996 .

[48]  A. Wilson,et al.  International Tables for Crystallography. Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic Publishers, Dordrecht/Boston/London 1992 (published for the International Union of Crystallography), 883 Seiten, ISBN 0‐792‐3‐16‐38X , 1993 .

[49]  M. Kitamura Polymorphism in the crystallization of L-glutamic acid , 1989 .

[50]  Y. Sugita Polymorphism of L-Glutamic Acid Crystals and Inhibitory Substance for β-Transition in Beet Molasses , 1988 .

[51]  M. Lehmann,et al.  A short hydrogen bond between near identical carboxyl groups in the α-modification of l-glutamic acid , 1980 .

[52]  Y. Ohashi,et al.  Structure of α Form of L-Glutamic Acid. α-β Transition , 1980 .

[53]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[54]  I. Chibata,et al.  Production and utilization of amino acids. , 1978, Angewandte Chemie.

[55]  T. Koetzle,et al.  Precision neutron diffraction structure determination of protein and nucleic acid components. VIII: the crystal and molecular structure of the β-form of the amino acidl-glutamic acid , 1972 .

[56]  C. Christiansen Untersuchungen über die optischen Eigenschaften von fein vertheilten Körpern , 1884 .