A decoupled approach for optimal estimation of transfer function parameters from input-output data
暂无分享,去创建一个
[1] R. Kumaresan,et al. Superresolution by structured matrix approximation , 1988 .
[2] Arnab K. Shaw. Optimal identification of discrete-time systems from impulse response data , 1994, IEEE Trans. Signal Process..
[3] C. K. Yuen,et al. Digital Filters , 1979, IEEE Transactions on Systems, Man, and Cybernetics.
[4] J. Shanks. RECURSION FILTERS FOR DIGITAL PROCESSING , 1967 .
[5] P. Jansson,et al. Resolution Enhancement of Spectra , 1970 .
[6] C. Burrus,et al. Time domain design of recursive digital filters , 1970 .
[7] L. Mcbride,et al. A technique for the identification of linear systems , 1965 .
[8] E. O. Brigham,et al. Application of the Kalman Filter to Continuous Signal Restoration , 1970 .
[9] Arnab K. Shaw. An optimal method for identification of pole-zero transfer functions , 1992, [Proceedings] 1992 IEEE International Symposium on Circuits and Systems.
[10] Ramdas Kumaresan,et al. An algorithm for pole-zero modeling and spectral analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..
[11] Jerry M. Mendel,et al. Maximum-Likelihood Deconvolution , 1989 .
[12] L. Jackson. Digital filters and signal processing , 1985 .
[13] M. Morf,et al. Some new algorithms for recursive estimation in constant, linear, discrete-time systems , 1974 .
[14] A. Evans,et al. Optimal least squares time-domain synthesis of recursive digital filters , 1973 .