THE ECLIPSING BINARY CEPHEID OGLE-LMC-CEP-0227 IN THE LARGE MAGELLANIC CLOUD: PULSATION MODELING OF LIGHT AND RADIAL VELOCITY CURVES

We performed a new and accurate fit of light and radial velocity curves of the Large Magellanic Cloud (LMC) Cepheid—OGLE-LMC-CEP-0227—belonging to a detached double-lined eclipsing binary system. We computed several sets of nonlinear, convective models covering a broad range in stellar mass, effective temperature, and chemical composition. The comparison between theory and observations indicates that current theoretical framework accounts for luminosity—V and I band—and radial velocity variations over the entire pulsation cycle. Predicted pulsation mass—M = 4.14 ± 0.06 M ☉—and mean effective temperature—Te = 6100 ± 50 K—do agree with observed estimates with an accuracy better than 1σ. The same outcome applies, on average, to the luminosity amplitudes and to the mean radius. We find that the best-fit solution requires a chemical composition that is more metal-poor than typical LMC Cepheids (Z = 0.004 versus 0.008) and slightly helium enhanced (Y = 0.27 versus 0.25), but the sensitivity to He abundance is quite limited. Finally, the best-fit model reddening—E(V – I) = 0.171 ± 0.015 mag—and the true distance modulus corrected for the barycenter of the LMC—μ0, LMC = 18.50 ± 0.02 ± 0.10 (syst) mag—agree quite well with similar estimates in the recent literature.

[1]  F. D. Macchetto,et al.  Cepheid Calibration of the Peak Brightness of Type Ia Supernovae. XI. SN 1998aq in NGC 3982 , 2001, astro-ph/0107391.

[2]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[3]  R. Kudritzki,et al.  An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent , 2013, Nature.

[4]  A. Walker,et al.  CORS BAADE–WESSELINK DISTANCE TO THE LMC NGC 1866 BLUE POPULOUS CLUSTER , 2012, 1201.3478.

[5]  J. Buchler,et al.  Toward a Resolution of the Bump and Beat Cepheid Mass Discrepancies , 1992 .

[6]  N. Nardetto,et al.  Calibrating the Cepheid Period-Luminosity relation from the infrared surface brightness technique II. The effect of metallicity, and the distance to the LMC , 2011, 1109.2016.

[7]  N. Langer,et al.  The Cepheid mass discrepancy and pulsation-driven mass loss , 2011, 1104.1638.

[8]  M. Marconi,et al.  Theoretical Fits of the δ Cephei Light, Radius, and Radial Velocity Curves , 2007, 0711.2857.

[9]  M. Marconi,et al.  Modeling of RR Lyrae light curves: the case of M3 , 2007 .

[10]  Pulsation and Evolutionary Masses of Classical Cepheids. I. Milky Way Variables , 2005, astro-ph/0505149.

[11]  C. Ngeow,et al.  Calibrating the projection factor for Galactic Cepheids , 2012, 1206.1895.

[12]  R. Stobie,et al.  Quantitative results of stellar evolution and pulsation theories , 1971 .

[13]  B. Madore Cepheids in external galaxies. , 1983 .

[14]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[15]  R. Stobie Cepheid Pulsation—III: Models Fitted to a new Mass–Luminosity Relation , 1969 .

[16]  N. Evans,et al.  High-Mass Triple Systems: The Classical Cepheid Y Carinae , 2003, astro-ph/0504169.

[17]  M. Marconi,et al.  Theoretical Models for Bump Cepheids , 2002, astro-ph/0201106.

[18]  P. Wood,et al.  Nonlinear Models of the Bump Cepheid HV 905 and the Distance Modulus to the Large Magellanic Cloud , 1997 .

[19]  D. Bersier,et al.  Self consistent modelling of the projection factor for interferometric distance determination , 2004 .

[20]  Bump Cepheids in the Magellanic Clouds: Metallicities, the Distances to the LMC and SMC, and the Pulsation-Evolution Mass Discrepancy , 2006, astro-ph/0601225.

[21]  Santi Cassisi,et al.  A CLASSICAL CEPHEID IN A LARGE MAGELLANIC CLOUD ECLIPSING BINARY: EVIDENCE OF SHORTCOMINGS IN CURRENT STELLAR EVOLUTIONARY MODELS? , 2011, 1101.0394.

[22]  E. Guinan,et al.  CLASSICAL CEPHEIDS REQUIRE ENHANCED MASS LOSS , 2012, 1210.6042.

[23]  J. P. Huchra,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[24]  C. D. Laney,et al.  The influence of chemical composition on the properties of Cepheid stars. II - The iron content ⋆ , 2008, 0807.1196.

[25]  W. Gieren,et al.  Magellanic Cloud Cepheids: Abundances , 1998 .

[26]  B. Pilecki,et al.  The dynamical mass of a classical Cepheid variable star in an eclipsing binary system , 2010, Nature.

[27]  M. Marconi,et al.  Intermediate-Mass Star Models with Different Helium and Metal Contents , 2000, astro-ph/0006251.

[28]  W. Gieren,et al.  ON THE EVOLUTIONARY AND PULSATION MASS OF CLASSICAL CEPHEIDS. III. THE CASE OF THE ECLIPSING BINARY CEPHEID CEP0227 IN THE LARGE MAGELLANIC CLOUD , 2012, 1202.2855.

[29]  Nicholas B. Suntzeff,et al.  New Understanding of Large Magellanic Cloud Structure, Dynamics, and Orbit from Carbon Star Kinematics , 2002 .

[30]  H Germany,et al.  NGC 1866: a milestone for understanding the chemical evolution of stellar populations in the Large Magellanic Cloud★ , 2010, 1012.1476.

[31]  M. Groenewegen Baade-Wesselink distances to Galactic and Magellanic Cloud Cepheids and the effect of metallicity , 2012, 1212.5478.

[32]  Giuseppe Bono,et al.  Classical Cepheid Pulsation Models. I. Physical Structure , 1999 .

[33]  Pierre Kervella,et al.  The projection factor of δ Cephei A calibration of the Baade-Wesselink method using the CHARA Array , 2005 .

[34]  Infrared photometry of Cepheids in the LMC clusters NGC 1866 and NGC 2031 , 2006, astro-ph/0610469.

[35]  New Evidence for Mass Loss from δ Cephei from H I 21 cm Line Observations , 2011, 1112.0028.

[36]  Wendy L. Freedman,et al.  THE CARNEGIE HUBBLE PROGRAM , 2011, 1109.3802.

[37]  W. Gieren,et al.  Direct Distances to Cepheids in the Large Magellanic Cloud: Evidence for a Universal Slope of the Period-Luminosity Relation up to Solar Abundance , 2005, astro-ph/0503637.

[38]  M. Seaton,et al.  Opacities for stellar envelopes , 1994 .

[39]  V. Ripepi,et al.  Theoretical fit of Cepheid light an radial velocity curves in the Large Magellanic Cloud cluster NGC 1866. , 2012, 1210.4343.

[40]  W. Gieren,et al.  THE ARAUCARIA PROJECT: ACCURATE DETERMINATION OF THE DYNAMICAL MASS OF THE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-1812 , 2011, 1109.5414.

[41]  Forrest J. Rogers,et al.  Opacities for the solar radiative interior , 1991 .