seeQTL: a searchable database for human eQTLs

Summary: seeQTL is a comprehensive and versatile eQTL database, including various eQTL studies and a meta-analysis of HapMap eQTL information. The database presents eQTL association results in a convenient browser, using both segmented local-association plots and genome-wide Manhattan plots. Availability and implementation: seeQTL is freely available for non-commercial use at http://www.bios.unc.edu/research/genomic_software/seeQTL/. Contact: fred_wright@unc.edu; kxia@bios.unc.edu Supplementary information: Supplementary data are available at Bioinformatics online.

[1]  Maureen J Donlin,et al.  Using the Generic Genome Browser (GBrowse) , 2007, Current protocols in bioinformatics.

[2]  Andre Franke,et al.  SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels , 2010, BMC Bioinformatics.

[3]  C. Damerval,et al.  QTL analysis of proteome and transcriptome variations for dissecting the genetic architecture of complex traits in maize , 2002, Plant Molecular Biology.

[4]  Wei Zhang,et al.  SCAN: SNP and copy number annotation , 2010, Bioinform..

[5]  Joshua T. Burdick,et al.  Common genetic variants account for differences in gene expression among ethnic groups , 2007, Nature Genetics.

[6]  R. Redon,et al.  Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes , 2007, Science.

[7]  D. Reich,et al.  Effects of cis and trans Genetic Ancestry on Gene Expression in African Americans , 2008, PLoS genetics.

[8]  Silke Szymczak,et al.  Genetics and Beyond – The Transcriptome of Human Monocytes and Disease Susceptibility , 2010, PloS one.

[9]  Elliott Kieff,et al.  Genetic Analysis of Human Traits In Vitro: Drug Response and Gene Expression in Lymphoblastoid Cell Lines , 2008, PLoS genetics.

[10]  Daniel Sinnett,et al.  Population genomics in a disease targeted primary cell model. , 2009, Genome research.

[11]  P. Deloukas,et al.  Common Regulatory Variation Impacts Gene Expression in a Cell Type–Dependent Manner , 2009, Science.

[12]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[13]  Joseph K. Pickrell,et al.  Understanding mechanisms underlying human gene expression variation with RNA sequencing , 2010, Nature.

[14]  R. Guigó,et al.  Transcriptome genetics using second generation sequencing in a Caucasian population , 2010, Nature.

[15]  D. Stephan,et al.  A survey of genetic human cortical gene expression , 2007, Nature Genetics.

[16]  John D. Storey,et al.  Mapping the Genetic Architecture of Gene Expression in Human Liver , 2008, PLoS biology.

[17]  Yong-shu He,et al.  [Structural variation in the human genome]. , 2009, Yi chuan = Hereditas.