Computing optimal uncertainty models from frequency domain data

Uncertainty models are an essential ingredient in robust control design. In addition, because of the trade-off between uncertainty and performance, the uncertainty model should be as "tight" as possible. Given a set of multivariable frequency response measurements, we show that the computation of multivariable nonparametric uncertainty models which are consistent with the data (i.e. not invalidated), reduces to a linear matrix inequality feasibility problem. Our method simultaneously searches for the responses of both the nominal system and the uncertainty weights that give an optimal uncertainty model. We then show that computing the optimal or least conservative model for the data can be done using semidefinite programming. Noise and fitting errors are explicitly factored into the computation using a bounded set approach. A state space uncertainty model can then be obtained from the optimal nonparametric model using frequency domain subspace identification techniques. The proposed technique is demonstrated on a generic MIMO example, where it outperforms the average-based approach by almost a factor of two (5 dB), in the frequency range with largest uncertainty.

[1]  Stephen P. Boyd,et al.  Identification of Systems with Parametric and Nonparametric Uncertainty , 1990, 1990 American Control Conference.

[2]  Stephen P. Boyd,et al.  Set-membership identification of systems with parametric and nonparametric uncertainty , 1992 .

[3]  Andrew Packard,et al.  The complex structured singular value , 1993, Autom..

[4]  K. Poolla,et al.  A time-domain approach to model validation , 1994, IEEE Trans. Autom. Control..

[5]  Yeung Yam,et al.  Frequency domain identification for robust control design , 1994 .

[6]  Lee H. Keel,et al.  Interval model identification and robustness analysis for uncertain flexible structures , 1996, IEEE Trans. Control. Syst. Technol..

[7]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[8]  Tadeusz Kaczorek,et al.  Robust and optimal control , 1996 .

[9]  Jan Swevers,et al.  A subspace algorithm for the identification of discrete time frequency domain power spectra , 1997, Autom..

[10]  Witold Pedrycz,et al.  Bounding approaches to system identification , 1997 .

[11]  P. V. D. Hof,et al.  Identification of probabilistic system uncertainty regions by explicit evaluation of bias and variance errors , 1997, IEEE Trans. Autom. Control..

[12]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[13]  Roy S. Smith,et al.  A generalization of the structured singular value and its application to model validation , 1998, IEEE Trans. Autom. Control..

[14]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..

[15]  R. A. de Callafon,et al.  Feedback oriented identification for enhanced and robust control: a fractional approach applied to a wafer stage. , 1998 .

[16]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[17]  Mark E. Campbell,et al.  Parametric uncertainty model for control design and analysis , 1999, IEEE Trans. Control. Syst. Technol..

[18]  Tetsuya Asai,et al.  Simultaneous parametric uncertainty modeling and robust control synthesis by LFT scaling , 2000, Autom..

[19]  Kuen-Yu Tsai,et al.  DQIT: μ-synthesis without D-scale fitting , 2004, IEEE Trans. Autom. Control..