Temperature inversions, thermal tides, and water ice clouds in the Martian tropics

[1] We report new results on the structure and dynamics of the tropical atmosphere of Mars derived from a combination of radio occultation measurements by Mars Global Surveyor and simulations by a Mars general circulation model (MGCM). Radio occultation experiments sounded the equatorial atmosphere at latitudes of 36°N to 30°S during midsummer of the Northern Hemisphere (Ls = 134°–162°), sampling the predawn thermal structure at a local time of ∼0412. Elevated temperature inversions are a conspicuous feature of these observations. They appear at pressures between 30 and 200 Pa, well above the surface, and their magnitude exceeds 6 K in 34% of the temperature profiles in this latitude band. The properties and spatial distribution of these elevated inversions are organized across the tropics on planetary scales. Inversions are strongest and occur most frequently above elevated terrain, achieving a peak magnitude of ∼30 K near Tharsis, and their altitude generally increases toward the south. According to MGCM simulations, which closely resemble the observations, these temperature inversions arise from zonally modulated thermal tides. The best simulation includes an interactive hydrologic cycle, which results in strong coupling between the thermal tides and radiatively active water ice clouds. Prominent clouds form in response to wave-induced adiabatic cooling and evolve in a pattern closely correlated with the thermal structure of the tides. The tides in turn are intensified by radiative forcing from the clouds. This tide-cloud coupling imposes strong diurnal modulation on the properties of clouds in the tropics.

[1]  Michael D. Smith,et al.  Traveling waves in the Northern Hemisphere of Mars , 2002 .

[2]  Michael D. Smith Interannual variability in TES atmospheric observations of Mars during 1999–2003 , 2004 .

[3]  John C. Pearl,et al.  One Martian year of atmospheric observations by the thermal emission spectrometer , 2001 .

[4]  S. Larson,et al.  Diurnal variation of Martian water-ice clouds in Tharsis region of the low latitude cloud belt: Observations in 1995–1999 apparitions , 2002 .

[5]  R. Wilson,et al.  Water ice clouds in the Martian atmosphere: General circulation model experiments with a simple cloud scheme , 2002 .

[6]  M. Richardson,et al.  The Martian Atmosphere During the Viking Mission, I Infrared Measurements of Atmospheric Temperatures Revisited , 2000 .

[7]  J. Pollack,et al.  Dynamics of the atmosphere of Mars , 1992 .

[8]  David P. Hinson,et al.  Initial results from radio occultation measurements with Mars Global Surveyor , 1999 .

[9]  R. Wilson,et al.  A topographically forced asymmetry in the martian circulation and climate , 2002, Nature.

[10]  John C. Pearl,et al.  Spectral imaging of martian water ice clouds and their diurnal behavior during the 1999 aphelion season (Ls = 130°) , 2003 .

[11]  M. Richardson,et al.  An assessment of the global, seasonal, and interannual spacecraft record of Martian climate in the thermal infrared , 2002 .

[12]  Richard J. Wilson,et al.  Radio occultation measurements of forced atmospheric waves on Mars , 2001 .

[13]  Jeffrey R. Barnes,et al.  General circulation model simulations of the Mars Pathfinder atmospheric structure investigation/meteorology data , 1999 .

[14]  R. Wilson,et al.  Investigation of the nature and stability of the Martian seasonal water cycle with a general circulation model , 2002 .

[15]  Duane O. Muhleman,et al.  WATER VAPOR SATURATION AT LOW ALTITUDES AROUND MARS APHELION : A KEY TO MARS CLIMATE ? , 1996 .

[16]  John C. Pearl,et al.  Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution , 2001 .

[17]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[18]  Richard W. Zurek,et al.  Diurnal tide in the Martian atmosphere , 1976 .

[19]  David E. Smith,et al.  Two Mars years of clouds detected by the Mars Orbiter Laser Altimeter , 2003 .

[20]  J. Bandfield,et al.  Observations of Martian ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer: The first Martian year , 2001 .

[21]  R. J. Wilson Evidence for diurnal period Kelvin waves in the Martian atmosphere from Mars Global Surveyor TES data , 2000 .

[22]  Terry Z. Martin,et al.  Thermal and albedo mapping of Mars during the Viking primary mission , 1977 .

[23]  M. J. Wolff,et al.  An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere , 2000 .

[24]  A. Colaprete,et al.  The Radiative Effects of Martian Water Ice Clouds on the Local Atmospheric Temperature Profile , 2000 .

[25]  R. John Wilson,et al.  Evidence for nonmigrating thermal tides in the Mars upper atmosphere from the Mars Global Surveyor Accelerometer Experiment , 2002 .

[26]  Robert M. Haberle,et al.  Simulations of the general circulation of the Martian atmosphere: 1. Polar processes , 1990 .

[27]  Stephen R. Lewis,et al.  Improved general circulation models of the Martian atmosphere from the surface to above 80 km , 1999 .

[28]  Kevin Hamilton,et al.  Comprehensive Model Simulation of Thermal Tides in the Martian Atmosphere , 1996 .

[29]  R. Wilson,et al.  Forced waves in the martian atmosphere from MGS TES nadir data , 2003 .

[30]  R. Clark,et al.  Results from the Mars Global Surveyor Thermal Emission Spectrometer. , 1998, Science.

[31]  Smith,et al.  GCM SIMULATION OF THERMAL TIDES IN THE MARS ATMOSPHERE , 2002 .

[32]  R. Todd Clancy,et al.  Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations , 2003 .

[33]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[34]  J. Schofield,et al.  Results of the Mars Pathfinder atmospheric structure investigation , 1999 .

[35]  R. John Wilson,et al.  A general circulation model simulation of the Martian polar warming , 1997 .

[36]  A. Colaprete,et al.  Cloud formation under Mars Pathfinder conditions , 1999 .

[37]  A. Ingersoll,et al.  Martian Clouds Observed by Mars Global Surveyor Mars Orbiter Camera from Ls 135 to 310 , 2002 .

[38]  R. Wilson,et al.  Stationary planetary waves in the atmosphere of Mars during southern winter , 2003 .

[39]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[40]  D. Hinson,et al.  Transient eddies in the southern hemisphere of Mars , 2002 .

[41]  Michael D. Smith The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer , 2002 .

[42]  G. Leonard Tyler,et al.  Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit , 2001 .

[43]  R. Todd Clancy,et al.  Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude , 2003 .