Bayesian modelling of geostatistical malaria risk data.

Bayesian geostatistical models applied to malaria risk data quantify the environment-disease relations, identify significant environmental predictors of malaria transmission and provide model-based predictions of malaria risk together with their precision. These models are often based on the stationarity assumption which implies that spatial correlation is a function of distance between locations and independent of location. We relax this assumption and analyse malaria survey data in Mali using a Bayesian non-stationary model. Model fit and predictions are based on Markov chain Monte Carlo simulation methods. Model validation compares the predictive ability of the non-stationary model with the stationary analogue. Results indicate that the stationarity assumption is important because it influences the significance of environmental factors and the corresponding malaria risk maps.

[1]  Andrew P. Morse,et al.  Malaria early warnings based on seasonal climate forecasts from multi-model ensembles , 2006, Nature.

[2]  S. Brooker,et al.  Bayesian spatial analysis and disease mapping: tools to enhance planning and implementation of a schistosomiasis control programme in Tanzania , 2006, Tropical medicine & international health : TM & IH.

[3]  S I Hay,et al.  Updating Historical Maps of Malaria Transmission Intensity in East Africa Using Remote Sensing. , 2002, Photogrammetric engineering and remote sensing.

[4]  R. Snow,et al.  A climate-based distribution model of malaria transmission in sub-Saharan Africa. , 1999, Parasitology today.

[5]  M. Quilici,et al.  Approche éco-géographique du paludisme en milieu urbain : la ville de Bamako au Mali , 1990 .

[6]  I Kleinschmidt,et al.  Spatial patterns of infant mortality in Mali: the effect of malaria endemicity. , 2004, American journal of epidemiology.

[7]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[8]  Simon I Hay,et al.  Malaria epidemic early warning and detection in African highlands. , 2004, Trends in parasitology.

[9]  L. Bruce-Chwatt Malaria in African infants and children in Southern Nigeria. , 1952, Annals of tropical medicine and parasitology.

[10]  I Kleinschmidt,et al.  A spatial statistical approach to malaria mapping. , 2000, International journal of epidemiology.

[11]  M. Tanner,et al.  An integrated approach for risk profiling and spatial prediction of Schistosoma mansoni-hookworm coinfection. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Armin Gemperli,et al.  Mapping malaria transmission in West and Central Africa , 2006, Tropical medicine & international health : TM & IH.

[13]  S. Hay,et al.  Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. , 2000, Advances in parasitology.

[14]  Alan E. Gelfand,et al.  Spatial Modeling of House Prices Using Normalized Distance-Weighted Sums of Stationary Processes , 2004 .

[15]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[16]  C. Lengeler,et al.  Spatial effects of the social marketing of insecticide‐treated nets on malaria morbidity , 2005, Tropical medicine & international health : TM & IH.

[17]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[18]  R. Snow,et al.  The need for maps of transmission intensity to guide malaria control in Africa , 1996 .

[19]  Dale L. Zimmerman,et al.  A comparison of spatial semivariogram estimators and corresponding ordinary Kriging predictors , 1991 .

[20]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[21]  M. Chin Populations at risk , 2005, Journal of General Internal Medicine.

[22]  Pietro Ceccato,et al.  An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa , 2005, Malaria Journal.

[23]  Armin Gemperli,et al.  Development of spatial statistical methods for modelling point-referenced spatial data in malaria epidemiology , 2003 .

[24]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[25]  I. Bogoch,et al.  Efficacy and side effects of praziquantel against Schistosoma mansoni in a community of western Côte d'Ivoire. , 2004, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[26]  P Vounatsou,et al.  Malaria mapping using transmission models: application to survey data from Mali. , 2006, American journal of epidemiology.

[27]  Penelope Vounatsou,et al.  Risk factors and spatial patterns of hookworm infection among schoolchildren in a rural area of western Côte d'Ivoire. , 2006, International journal for parasitology.

[28]  A. Gelfand,et al.  Bayesian Variogram Modeling for an Isotropic Spatial Process , 1997 .

[29]  P. Diggle,et al.  Model‐based geostatistics , 2007 .

[30]  Montserrat Fuentes,et al.  A New Class of Nonstationary Spatial Models , 2001 .

[31]  M C Thomson,et al.  Predicting malaria infection in Gambian children from satellite data and bed net use surveys: the importance of spatial correlation in the interpretation of results. , 1999, The American journal of tropical medicine and hygiene.

[32]  P. Diggle,et al.  Childhood malaria in the Gambia: a case-study in model-based geostatistics. , 2002 .

[33]  S. Hay,et al.  Satellite imagery in the study and forecast of malaria , 2002, Nature.

[34]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[35]  I. Kleinschmidt,et al.  An empirical malaria distribution map for West Africa , 2001, Tropical medicine & international health : TM & IH.