Numerical Solution of Diffusion Models in Biomedical Imaging on Multicore Processors

In this paper, we consider nonlinear partial differential equations (PDEs) of diffusion/advection type underlying most problems in image analysis. As case study, we address the segmentation of medical structures. We perform a comparative study of numerical algorithms arising from using the semi-implicit and the fully implicit discretization schemes. Comparison criteria take into account both the accuracy and the efficiency of the algorithms. As measure of accuracy, we consider the Hausdorff distance and the residuals of numerical solvers, while as measure of efficiency we consider convergence history, execution time, speedup, and parallel efficiency. This analysis is carried out in a multicore-based parallel computing environment.

[1]  J. A. Sethian,et al.  Fast Marching Methods , 1999, SIAM Rev..

[2]  Joachim Weickert,et al.  Relations Between Regularization and Diffusion Filtering , 2000, Journal of Mathematical Imaging and Vision.

[3]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  James A. Sethian,et al.  Level Set Methods for Curvature Flow, Image Enchancement, and Shape Recovery in Medical Images , 1997, VisMath.

[6]  Fiorella Sgallari,et al.  Semi-implicit complementary volume scheme for solving level set like equations in image processing and curve evolution , 2003, Numerische Mathematik.

[7]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[8]  D. Keyes,et al.  Jacobian-free Newton-Krylov methods: a survey of approaches and applications , 2004 .

[9]  J. Koenderink The structure of images , 2004, Biological Cybernetics.

[10]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[11]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[12]  Alfred K. Louis,et al.  Medical imaging: state of the art and future development , 1992 .

[13]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[14]  J. W. Thomas Numerical Partial Differential Equations , 1999 .

[15]  W. Stolz,et al.  The ABCD rule of dermatoscopy. High prospective value in the diagnosis of doubtful melanocytic skin lesions. , 1994, Journal of the American Academy of Dermatology.

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[18]  N. Walkington Algorithms for Computing Motion by Mean Curvature , 1996 .

[19]  A. Sarti,et al.  Subjective surfaces and Riemannian mean curvature flow of graphs. , 2001 .

[20]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[21]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[22]  Harald Ganster,et al.  Automated Melanoma Recognition , 2001, IEEE Trans. Medical Imaging.

[23]  W. Jaschke,et al.  Automated melanoma recognition , 2001, IEEE Transactions on Medical Imaging.

[24]  J. Dongarra,et al.  The Impact of Multicore on Computational Science Software , 2007 .

[25]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[27]  L. Evans,et al.  Motion of level sets by mean curvature. II , 1992 .

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  K Wolff,et al.  In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. , 1987, Journal of the American Academy of Dermatology.

[30]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.