Processing EEG Signals Towards the Construction of a User Experience Assessment Method

This paper proposes a neural network to identify pleasant and unpleasant emotions from recorded electroencephalography (EEG) signals, towards the construction of a method to assess user experience (UX). EEG signals were obtained with an Emotiv EEG device. The input data was recorded during the presentation of visual stimulus that induce emotions known a priori. The EEG signals recorded were preprocessed to enhance the differences and then used to train and validate a Patternet neural network. The results indicate that the neural network provides an accurate rate of 99.61 % for 258 preprocessed signals.

[1]  Johan Hagelbäck,et al.  Evaluating Classifiers for Emotion Recognition Using EEG , 2013, HCI.

[2]  Olga Sourina,et al.  A Fractal-based Algorithm of Emotion Recognition from EEG using Arousal-Valence Model , 2011, BIOSIGNALS.

[3]  Vojkan Mihajlovic,et al.  Frontal EEG Asymmetry Based Classification of Emotional Valence using Common Spatial Patterns , 2010 .

[4]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[5]  Alberto L. Morán,et al.  Emotions Identification to Measure User Experience Using Brain Biometric Signals , 2015, HCI.

[6]  Leontios J. Hadjileontiadis,et al.  Emotion Recognition From EEG Using Higher Order Crossings , 2010, IEEE Transactions on Information Technology in Biomedicine.

[7]  Julien Penders,et al.  Towards wireless emotional valence detection from EEG , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  Philip A. Gable,et al.  The role of asymmetric frontal cortical activity in emotion-related phenomena: A review and update , 2010, Biological Psychology.

[9]  Lei Zhou,et al.  Application of Frontal EEG Asymmetry to User Experience Research , 2014, HCI.

[10]  Alberto L. Morán,et al.  UCSA: a design framework for usable cognitive systems for the worried-well , 2012, Personal and Ubiquitous Computing.

[11]  Sergio Daniel,et al.  Adquisición de señales electroencefalográficas para el movimiento de un prototipo de silla de ruedas en un sistema BCI , 2012 .

[12]  Bermúdez Cicchino,et al.  Técnicas de procesamiento de EEG para detección de eventos , 2013 .

[13]  Mannes Poel,et al.  Evaluating user experience with respect to user expectations in brain-computer interface games , 2011 .

[14]  B. Fredrickson,et al.  Positive affect and the complex dynamics of human flourishing. , 2005, The American psychologist.

[15]  P. Lang International Affective Picture System (IAPS) : Technical Manual and Affective Ratings , 1995 .

[16]  M. Bradley,et al.  The International Affective Picture System (IAPS) in the study of emotion and attention. , 2007 .

[17]  Manfred Tscheligi,et al.  HERMES: Pervasive Computing and Cognitive Training for Ageing Well , 2009, IWANN.

[18]  M. Kostyunina,et al.  Frequency characteristics of EEG spectra in the emotions , 1996, Neuroscience and Behavioral Physiology.

[19]  A. González,et al.  Emociones negativas y su impacto en la salud mental y física , 2009 .

[20]  Sam J. Maglio,et al.  Emotional category data on images from the international affective picture system , 2005, Behavior research methods.

[21]  Leena Arhippainen,et al.  Empirical Evaluation of User Experience in two Adaptive Mobile Application Prototypes , 2003 .

[22]  Boris E. R. de Ruyter,et al.  Trends in measuring human behavior and interaction , 2011, Personal and Ubiquitous Computing.