A Computational Framework for the Prediction of Multistage Heat Treatments in Age Hardened Alloys

The computer-aided materials design process, otherwise known as Integrated Computational Materials Engineering (ICME), is highly iterative and as such requires flexible tools that have the ability to link processing, properties, and performance not only in the usual forward direction but also in the inverse direction more associated with a goal-oriented/design framework of ICME. While many techniques exist that relate properties to performance in both forward/inverse directions, tools that prescribe a process when given a desired microstructure have not been developed in detail. This research fills that gap by coupling physics-based precipitation models with ”mesh adaptive direct search” optimization techniques. The tool is used to prescribe heat treatments in Ni-rich NiTi shape memory alloys that will result in a desired size distribution of Ni4Ti3 precipitates. This predictive technique provides a rigorous strategy for the identification of materials processing schedules—provided the forward models connecting processing and microstructure are available—that can significantly reduce the experimental search space that needs to be explored, accelerating the materials development process.

[1]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[2]  J. Christian,et al.  The theory of transformations in metals and alloys , 2003 .

[3]  Jilt Sietsma,et al.  A concise model for mixed-mode phase transformations in the solid state , 2004 .

[4]  V. Pushin,et al.  Bimodal size distribution of Ti3Ni4 particles and martensitic transformations in slowly cooled nickel-rich TiNi alloys , 1997 .

[5]  X. Ren,et al.  The Nature of Reversible Change in Ms Temperatures of Ti–Ni Alloys with Alternating Aging , 1999 .

[6]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[7]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[8]  Rolf Gotthardt,et al.  Interaction between microstructure and multiple-step transformation in binary NiTi alloys using in-situ transmission electron microscopy observations , 1998 .

[9]  E. Vigneau,et al.  Number of particles for the determination of size distribution from microscopic images , 2000 .

[10]  Dimitris C. Lagoudas,et al.  Micromechanics of precipitated near-equiatomic Ni-rich NiTi shape memory alloys , 2014 .

[11]  F. Lampariello,et al.  On the use of the Kolmogorov-Smirnov statistical test for immunofluorescence histogram comparison. , 2000, Cytometry.

[12]  Shuichi Miyazaki,et al.  Deformation and transition behavior associated with theR-phase in Ti-Ni alloys , 1986 .

[13]  Mario R. Eden,et al.  Process Structure Optimization Using a Hybrid Disjunctive-Genetic Programming Approach , 2009 .

[14]  J. Feder,et al.  Homogeneous nucleation and growth of droplets in vapours , 1966 .

[15]  E. Kozeschnik Modeling Solid-State Precipitation , 2012 .

[16]  V. Novák,et al.  R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals , 2006 .

[17]  Sébastien Le Digabel,et al.  Algorithm xxx : NOMAD : Nonlinear Optimization with the MADS algorithm , 2010 .

[18]  G. Eggeler,et al.  The mechanism of multistage martensitic transformations in aged Ni-rich NiTi shape memory alloys , 2002 .

[19]  Y. Chumlyakov,et al.  A comparative study of elastic constants of Ti-Ni-based alloys prior to martensitic transformation , 2001 .

[20]  C. Igathinathane,et al.  Comparison of particle size distribution of celestite mineral by machine vision ΣVolume approach and mechanical sieving , 2012 .

[21]  Joseph D. Robson,et al.  Modelling the overlap of nucleation, growth and coarsening during precipitation , 2004 .

[23]  G. Eggeler,et al.  Influence of Ni on martensitic phase transformations in NiTi shape memory alloys , 2007 .

[24]  R. Wagner,et al.  Homogeneous Second‐Phase Precipitation , 2013 .

[25]  C. Sommitsch,et al.  Interaction of the Precipitation Kinetics of δ And γ’ Phases in Nickel-Base Superalloy ATI Allvac® 718PlusTM , 2010 .

[26]  Xiaobing Ren,et al.  Origin of abnormal multi-stage martensitic transformation behavior in aged Ni-rich Ti–Ni shape memory alloys , 2004 .

[27]  Charles Audet,et al.  OrthoMADS: A Deterministic MADS Instance with Orthogonal Directions , 2008, SIAM J. Optim..

[28]  Yunzhi Wang,et al.  Effect of Ni4Ti3 precipitation on martensitic transformation in Ti-Ni , 2010 .

[29]  Alexandre Dolgui,et al.  Genetic algorithm for balancing reconfigurable machining lines , 2013, Comput. Ind. Eng..

[30]  E. Kozeschnik,et al.  Modified Evolution Equations for the Precipitation Kinetics of Complex Phases in Multi-Component Systems , 2004 .

[31]  Hyeon-Cheol Kim,et al.  Effect of R-phase heat treatment on torsional resistance and cyclic fatigue fracture. , 2013, Journal of endodontics.

[32]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[33]  B. Blanpain,et al.  An optimized diffusion database for the disordered and ordered bcc phases in the binary FeTi system , 2011 .

[34]  Ling Xu,et al.  A Comparison of Statistical Tools for Identifying Modality in Body Mass Distributions , 2014, Journal of Data Science.

[35]  H. Wakeshima Time Lag in the Self‐Nucleation , 1954 .

[36]  Weijia Tang,et al.  Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti-Ni shape memory alloys , 1997 .

[37]  Minoru Nishida,et al.  Precipitation processes in near-equiatomic TiNi shape memory alloys , 1986 .

[38]  Pierre Hansen,et al.  Variable neighborhood search: Principles and applications , 1998, Eur. J. Oper. Res..

[39]  F. Massey The Kolmogorov-Smirnov Test for Goodness of Fit , 1951 .

[40]  Charles Audet,et al.  Globalization strategies for Mesh Adaptive Direct Search , 2008, Comput. Optim. Appl..

[41]  Charles Audet,et al.  NOMAD User Guide. Version 3.7.2 , 2009 .

[42]  Eckhard Quandt,et al.  Thin film shape memory microvalves with adjustable operation temperature , 2000 .

[43]  J. Langer,et al.  Kinetics of nucleation in near-critical fluids , 1980 .

[44]  I. Turek,et al.  On diffusion-controlled evolution of closed solid-state thermodynamic systems at constant temperature and pressure , 1991 .

[45]  Richard J. Beckman,et al.  A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.

[46]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[47]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[48]  Peter W Voorhees,et al.  The theory of Ostwald ripening , 1985 .

[49]  D. Schryvers,et al.  Linking a completely three-dimensional nanostrain to a structural transformation eigenstrain. , 2009, Nature materials.

[50]  H. Hamanaka,et al.  Reversible changes in yield stress and transformation temperature of a NiTi alloy by alternate heat treatments , 1988 .

[51]  X. Ren,et al.  Why Does the Martensitic Transformation Temperature Strongly Depend on Composition? , 2000 .

[52]  Kang Tai,et al.  Classification-driven model selection approach of genetic programming in modelling of turning process , 2013 .

[53]  Bruno Buchmayr,et al.  MatCalc – A simulation tool for multicomponent thermodynamics, diffusion and phase transformation kinetics , 2001 .

[54]  D. Schryvers,et al.  Quantitative determination of strain fields around Ni4Ti3 precipitates in NiTi , 2005 .

[55]  H. Cerjak,et al.  New approach to predict the long-term creep behaviour and evolution of precipitate back-stress of 9–12% chromium steels , 2010 .

[56]  Frank C. Porter Testing Consistency of Two Histograms , 2008 .

[57]  Charles Audet,et al.  Mesh Adaptive Direct Search Algorithms for Constrained Optimization , 2006, SIAM J. Optim..

[58]  M. Perez Gibbs-Thomson effects in phase transformations , 2005 .

[59]  J. L. Hodges,et al.  The significance probability of the smirnov two-sample test , 1958 .

[60]  Charles Audet,et al.  Nonsmooth optimization through Mesh Adaptive Direct Search and Variable Neighborhood Search , 2006, J. Glob. Optim..

[61]  Etienne E. Kerre,et al.  Using Similarity Measures for Histogram Comparison , 2003, IFSA.

[62]  P. Fratzl,et al.  Modelling of kinetics in multi-component multi-phase systems with spherical precipitates I. – Theory , 2004 .