TOPICAL REVIEW: Quantum effects in electrical and thermal transport through nanowires

Nanowires, point contacts and metallic single-wall carbon nanotubes are one-dimensional nanostructures which display important size-dependent quantum effects. Quantization due to the transverse confinement and resultant finite level spacing of electronic and phononic states are responsible for some novel effects. Many studies have revealed fundamental and technologically important properties, which are being explored for fabricating future nanodevices. Various simulation studies based on the classical molecular dynamics method and combined force and current measurements have shown the relationship between atomic structure and transport properties. The atomic, electronic and transport properties of these nanostructures have been an area of active research. This brief review presents some quantum effects in the electronic and phononic transport through nanowires.

[1]  T. Miyata,et al.  Oxide phosphor thin-film electroluminescent devices fabricated by magnetron sputtering with rapid thermal annealing , 2001 .

[2]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[3]  A. D. Corso,et al.  String tension and stability of magic tip-suspended nanowires. , 2001, Science.

[4]  S. Ciraci,et al.  Variable and reversible quantum structures on a single carbon nanotube , 2000, cond-mat/0011309.

[5]  Xu,et al.  Electronic transport in Y-junction carbon nanotubes , 2000, Physical review letters.

[6]  E. Tosatti,et al.  Weird Gold Nanowires , 2000, Science.

[7]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[8]  Kong,et al.  Intrinsic electrical properties of individual single-walled carbon nanotubes with small band gaps , 2000, Physical review letters.

[9]  A. Buldum,et al.  Contact resistance between carbon nanotubes , 2000, cond-mat/0005523.

[10]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[11]  Kwon,et al.  Unusually high thermal conductivity of carbon nanotubes , 2000, Physical review letters.

[12]  S. Berezovsky,et al.  A possible origin of anomalous properties of proper uniaxial ferroelectrics near the lock-in transition , 2000 .

[13]  Zhen Yao,et al.  Carbon nanotube intramolecular junctions , 1999, Nature.

[14]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[15]  Yong‐Hyun Kim,et al.  Band-gap modification by radial deformation in carbon nanotubes , 1999 .

[16]  U. Landman,et al.  Nonlinear Peltier effect and thermoconductance in nanowires , 1999 .

[17]  U. Landman,et al.  Gold Nanowires and Their Chemical Modifications , 1999, cond-mat/9909405.

[18]  Marco Buongiorno Nardelli,et al.  Electronic transport in extended systems: Application to carbon nanotubes , 1999 .

[19]  P. L. McEuen,et al.  Electrical transport measurements on single-walled carbon nanotubes , 1999 .

[20]  C. Y. Fong,et al.  Quantum heat transfer through an atomic wire , 1999, cond-mat/9908204.

[21]  Kwon,et al.  Fractional quantum conductance in carbon nanotubes , 1999, Physical review letters.

[22]  C. Quate,et al.  Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes , 1999 .

[23]  D. Leitner,et al.  Thermal conduction through a molecule , 1999 .

[24]  J. Ihm,et al.  Exact solutions to the tight-binding model for the conductance of carbon nanotubes , 1999 .

[25]  A. Buldum,et al.  Atomic Scale Sliding and Rolling of Carbon Nanotubes , 1999, cond-mat/9906066.

[26]  D. Sánchez-Portal,et al.  Stiff Monatomic Gold Wires with a Spinning Zigzag Geometry , 1999, cond-mat/9905225.

[27]  Jiangtao Hu,et al.  Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires , 1999, Nature.

[28]  C. Dekker Carbon nanotubes as molecular quantum wires , 1999 .

[29]  E. Gmelin,et al.  REVIEW ARTICLE: Thermal boundary resistance of mechanical contacts between solids at sub-ambient temperatures , 1999 .

[30]  R. Superfine,et al.  Nanometre-scale rolling and sliding of carbon nanotubes , 1999, Nature.

[31]  J. Ihm,et al.  Ab initio pseudopotential method for the calculation of conductance in quantum wires , 1999 .

[32]  Leon Balents,et al.  Luttinger-liquid behaviour in carbon nanotubes , 1998, Nature.

[33]  M. Anantram,et al.  Band-gap change of carbon nanotubes: Effect of small uniaxial and torsional strain , 1998, cond-mat/9811263.

[34]  N. Agraït,et al.  Formation and manipulation of a metallic wire of single gold atoms , 1998, Nature.

[35]  Yukihito Kondo,et al.  Quantized conductance through individual rows of suspended gold atoms , 1998, Nature.

[36]  S. Ciraci,et al.  Conductance of ferromagnetic nanowires , 1998 .

[37]  P. Avouris,et al.  The effect of structural distortions on the electronic structure of carbon nanotubes , 1998, cond-mat/9808269.

[38]  M. Anantram,et al.  Conductance of carbon nanotubes with disorder: A numerical study , 1998, cond-mat/9809255.

[39]  Juan Carlos Cuevas,et al.  The signature of chemical valence in the electrical conduction through a single-atom contact , 1998, Nature.

[40]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[41]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[42]  Italy.,et al.  Noncrystalline Structures of Ultrathin Unsupported Nanowires , 1998, cond-mat/9803096.

[43]  Alexey Bezryadin,et al.  MULTIPROBE TRANSPORT EXPERIMENTS ON INDIVIDUAL SINGLE-WALL CARBON NANOTUBES , 1998 .

[44]  M. Roukes,et al.  Heat transport in mesoscopic systems , 1998, cond-mat/9801252.

[45]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[46]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[47]  C. Lieber,et al.  Atomic structure and electronic properties of single-walled carbon nanotubes , 1998, Nature.

[48]  K. Jacobsen,et al.  Conductance eigenchannels in nanocontacts , 1997 .

[49]  A. Yeyati,et al.  MICROSCOPIC ORIGIN OF CONDUCTING CHANNELS IN METALLIC ATOMIC-SIZE CONTACTS , 1997, cond-mat/9711263.

[50]  Habib Mehrez,et al.  Yielding and fracture mechanisms of nanowires , 1997 .

[51]  R. Superfine,et al.  Bending and buckling of carbon nanotubes under large strain , 1997, Nature.

[52]  D. Baeriswyl,et al.  Jellium Model of Metallic Nanocohesion , 1997, cond-mat/9709031.

[53]  A. Yeyati,et al.  Conductance quantization and electron resonances in sharp tips and atomic-size contacts , 1997, cond-mat/9708164.

[54]  N. D. Lang ANOMALOUS DEPENDENCE OF RESISTANCE ON LENGTH IN ATOMIC WIRES , 1997 .

[55]  R. Egger,et al.  Effective Low-Energy Theory for Correlated Carbon Nanotubes , 1997, cond-mat/9708065.

[56]  C. Kane,et al.  COULOMB INTERACTIONS AND MESOSCOPIC EFFECTS IN CARBON NANOTUBES , 1997, cond-mat/9708054.

[57]  H. Horstmann,et al.  Transport, docking and exocytosis of single secretory granules in live chromaffin cells , 1997, Nature.

[58]  Jian Wang,et al.  Quantum transport through atomic wires , 1997 .

[59]  U. Landman,et al.  On Mesoscopic Forces and Quantized Conductance in Model Metallic Nanowires , 1997, cond-mat/9906018.

[60]  U. Landman,et al.  Shape effects on conductance quantization in three-dimensional nanowires: Hard versus soft potentials , 1997 .

[61]  Uzi Landman,et al.  Cluster-derived structures and conductance fluctuations in nanowires , 1997, Nature.

[62]  S. Datta Electronic transport in mesoscopic systems , 1995 .

[63]  J. Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[64]  M. Tsukada,et al.  CONDUCTANCE OF NANOTUBE JUNCTIONS AND ITS SCALING LAW , 1997 .

[65]  Lino Reggiani,et al.  Thermal Conductivity and Lorenz Number for One-Dimensional Ballistic Transport , 1997 .

[66]  J. Nørskov,et al.  SCATTERING AND CONDUCTANCE QUANTIZATION IN THREE-DIMENSIONAL METAL NANOCONTACTS , 1997 .

[67]  S. Ciraci,et al.  Conductance through a single atom , 1997 .

[68]  P. McEuen,et al.  Single-Electron Transport in Ropes of Carbon Nanotubes , 1996, Science.

[69]  L. Satin,et al.  Reduction of Voltage-Dependent Mg2+ Blockade of NMDA Current in Mechanically Injured Neurons , 1996, Science.

[70]  T. Ebbesen Carbon Nanotubes: Preparation and Properties , 1996 .

[71]  Sutton,et al.  Force and conductance jumps in atomic-scale metallic contacts. , 1996, Physical Review B (Condensed Matter).

[72]  Sáenz,et al.  Conductance and Mechanical Properties of Atomic-Size Metallic Contacts: A Simple Model. , 1996, Physical review letters.

[73]  Landman,et al.  Reversible Manipulations of Room Temperature Mechanical and Quantum Transport Properties in Nanowire Junctions. , 1996, Physical review letters.

[74]  Young Hee Lee,et al.  Crystalline Ropes of Metallic Carbon Nanotubes , 1996, Science.

[75]  Benedict,et al.  Quantum conductance of carbon nanotubes with defects. , 1996, Physical review. B, Condensed matter.

[76]  Kobayashi,et al.  Atomic-scale friction image of graphite in atomic-force microscopy. , 1996, Physical review. B, Condensed matter.

[77]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[78]  Charles M. Lieber,et al.  Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes , 1996, Science.

[79]  Vieira,et al.  Atomic-sized metallic contacts: Mechanical properties and electronic transport. , 1996, Physical review letters.

[80]  J. L. Costa-Krämer,et al.  Erratum to “Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top” [Surface Science 342 (1995) L1144] , 1996 .

[81]  Benedict,et al.  Pure carbon nanoscale devices: Nanotube heterojunctions. , 1996, Physical review letters.

[82]  U. Dürig,et al.  Study of yielding mechanics in nanometer-sized Au contacts , 1996 .

[83]  M. Dresselhaus,et al.  Tunneling conductance of connected carbon nanotubes. , 1996, Physical review. B, Condensed matter.

[84]  Muller,et al.  Quantization effects in the conductance of metallic contacts at room temperature. , 1996, Physical review. B, Condensed matter.

[85]  Pedro A. Serena,et al.  Nanowire formation in macroscopic metallic contacts: quantum mechanical conductance tapping a table top , 1995 .

[86]  J. Nagy,et al.  Structural and electronic properties of bent carbon nanotubes , 1995 .

[87]  Laurits Højgaard Olesen,et al.  Quantized conductance in atom-sized wires between two metals. , 1995, Physical review. B, Condensed matter.

[88]  Lang,et al.  Resistance of atomic wires. , 1995, Physical review. B, Condensed matter.

[89]  Sutton,et al.  Conditions for conductance quantization in realistic models of atomic-scale metallic contacts. , 1995, Physical review. B, Condensed matter.

[90]  Zhang Polygonal spiral of coil-shaped carbon nanotubules. , 1995, Physical review. B, Condensed matter.

[91]  S. Seraphin,et al.  Complex branching phenomena in the growth of carbon nanotubes , 1995 .

[92]  J. Ruitenbeek,et al.  The signature of conductance quantization in metallic point contacts , 1995, Nature.

[93]  Vieira,et al.  Plastic Deformation of Nanometer-Scale Gold Connective Necks. , 1995, Physical review letters.

[94]  U. Landman,et al.  Properties of Metallic Nanowires: From Conductance Quantization to Localization , 1995, Science.

[95]  Hirose,et al.  First-principles calculation of the electronic structure for a bielectrode junction system under strong field and current. , 1995, Physical review. B, Condensed matter.

[96]  van Ruitenbeek JM,et al.  Subquantum conductance steps in atom-sized contacts of the semimetal Sb. , 1994, Physical review. B, Condensed matter.

[97]  Sáenz,et al.  Theory of conduction through narrow constrictions in a three-dimensional electron gas. , 1994, Physical review. B, Condensed matter.

[98]  Jacobsen,et al.  Quantized conductance in an atom-sized point contact. , 1994, Physical review letters.

[99]  Vincent Bayot,et al.  Electrical resistance of a carbon nanotube bundle , 1994 .

[100]  Benedict,et al.  Hybridization effects and metallicity in small radius carbon nanotubes. , 1994, Physical review letters.

[101]  Tian,et al.  Aharonov-Bohm-type effect in graphene tubules: A Landauer approach. , 1994, Physical review. B, Condensed matter.

[102]  A. Sawada,et al.  Thermal and electrical conductance across copper joints below 100mK , 1994 .

[103]  García,et al.  Quantum contact in gold nanostructures by scanning tunneling microscopy. , 1993, Physical review letters.

[104]  Peter Kittel,et al.  Thermal conductance of pressed metallic contacts augmented with indium foil or Apiezon grease at liquid helium temperatures , 1993 .

[105]  T. Ichihashi,et al.  Single-shell carbon nanotubes of 1-nm diameter , 1993, Nature.

[106]  M. S. de Vries,et al.  Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls , 1993, Nature.

[107]  Vieira,et al.  Conductance steps and quantization in atomic-size contacts. , 1993, Physical review. B, Condensed matter.

[108]  Sutton,et al.  Jumps in electronic conductance due to mechanical instabilities. , 1993, Physical review letters.

[109]  White,et al.  Helical and rotational symmetries of nanoscale graphitic tubules. , 1993, Physical review. B, Condensed matter.

[110]  Pastawski Classical and quantum transport from generalized Landauer-Büttiker equations. II. Time-dependent resonant tunneling. , 1992, Physical review. B, Condensed matter.

[111]  Riichiro Saito,et al.  Electronic structure of chiral graphene tubules , 1992 .

[112]  Sawada,et al.  New one-dimensional conductors: Graphitic microtubules. , 1992, Physical review letters.

[113]  White,et al.  Are fullerene tubules metallic? , 1992, Physical review letters.

[114]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[115]  Tekman,et al.  Theoretical study of transport through a quantum point contact. , 1991, Physical review. B, Condensed matter.

[116]  V. Velasco,et al.  Matching methods for single and multiple interfaces: Discrete and continuous media , 1991 .

[117]  Tekman,et al.  Ballistic transport through a quantum point contact: Elastic scattering by impurities. , 1990, Physical review. B, Condensed matter.

[118]  Faist,et al.  Possible observation of impurity effects on conductance quantization. , 1990, Physical review. B, Condensed matter.

[119]  Tekman,et al.  Theory of anomalous corrugation of the Al(111) surface obtained from scanning tunneling microscopy. , 1990, Physical review. B, Condensed matter.

[120]  J. Pethica,et al.  Inelastic flow processes in nanometre volumes of solids , 1990 .

[121]  Y. Imry,et al.  Effects of channel opening and disorder on the conductance of narrow wires. , 1990, Physical review. B, Condensed matter.

[122]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[123]  Büttiker,et al.  Quantized transmission of a saddle-point constriction. , 1990, Physical review. B, Condensed matter.

[124]  R. G. Wheeler,et al.  Resonant transport effects due to an impurity in a narrow constriction , 1990 .

[125]  H. Fukuyama,et al.  Electrical resistance of screw‐fastened thermal joints for ultra‐low temperatures , 1990 .

[126]  Imry,et al.  Quantization of the conductance of ballistic point contacts beyond the adiabatic approximation. , 1990, Physical review. B, Condensed matter.

[127]  N. García,et al.  Is the observed quantized conductance on small contacts due to coherent ballistic transport , 1990 .

[128]  Tekman,et al.  Theory of transition from the tunneling regime to point contact in scanning tunneling microscopy. , 1989, Physical review. B, Condensed matter.

[129]  C. Fau,et al.  Bulk superlattice in PbGdTe , 1989 .

[130]  Tekman,et al.  Atomic theory of scanning tunneling microscopy. , 1989, Physical review. B, Condensed matter.

[131]  R. Landauer,et al.  Conductance determined by transmission: probes and quantised constriction resistance , 1989 .

[132]  Tekman,et al.  Effects of the constriction geometry on quasi-one-dimensional transport: Adiabatic evolution and resonant tunneling. , 1989, Physical review. B, Condensed matter.

[133]  Chu,et al.  Effect of impurities on the quantized conductance of narrow channels. , 1989, Physical review. B, Condensed matter.

[134]  J. Masek,et al.  Coherent-potential approach for the zero-temperature DC conductance of weakly disordered narrow systems , 1989 .

[135]  Harris,et al.  Nonlinear conductance of quantum point contacts. , 1989, Physical review. B, Condensed matter.

[136]  Tekman,et al.  Novel features of quantum conduction in a constriction. , 1989, Physical review. B, Condensed matter.

[137]  N. García,et al.  LETTER TO THE EDITOR: On the ballistic conductance of small contacts and its resonant structure: trumpet effect washes out resonant structure , 1989 .

[138]  P. Středa LETTER TO THE EDITOR: Quantised thermopower of a channel in the ballistic regime , 1989 .

[139]  A. Szafer,et al.  Theory of quantum conduction through a constriction. , 1989, Physical review letters.

[140]  Flores,et al.  Contact resistance in the scanning tunneling microscope at very small distances. , 1988, Physical review. B, Condensed matter.

[141]  G. Kirczenow Theory of the conductance of ballistic quantum channels , 1988 .

[142]  David A. Ritchie,et al.  The transition from one- to zero-dimensional ballistic transport , 1988 .

[143]  T. Thornton,et al.  One-dimensional transport and the quantisation of the ballistic resistance , 1988 .

[144]  Williamson,et al.  Quantized conductance of point contacts in a two-dimensional electron gas. , 1988, Physical review letters.

[145]  L. Nd Resistance of a one-atom contact in the scanning tunneling microscope. , 1987 .

[146]  Laughlin,et al.  Differential conductance in three-dimensional resonant tunneling. , 1987, Physical review. B, Condensed matter.

[147]  Nelson,et al.  Dimensionality and size effects in simple metals. , 1986, Physical review. B, Condensed matter.

[148]  Büttiker,et al.  Four-terminal phase-coherent conductance. , 1986, Physical review letters.

[149]  G Grinstein,et al.  Directions in condensed matter physics : memorial volume in honor of Shang-keng Ma , 1986 .

[150]  Imry,et al.  Energy averaging and the flux-periodic phenomena in small normal-metal rings. , 1986, Physical review. B, Condensed matter.

[151]  Batra,et al.  Theory of the quantum size effect in simple metals. , 1986, Physical review. B, Condensed matter.

[152]  R. Landauer,et al.  Generalized many-channel conductance formula with application to small rings. , 1985, Physical review. B, Condensed matter.

[153]  W. Ekardt,et al.  Work function of small metal particles: Self-consistent spherical jellium-background model , 1984 .

[154]  P. Anderson,et al.  Definition and measurement of the electrical and thermal resistances , 1981 .

[155]  C. Soukoulis,et al.  Static Conductance and Scaling Theory of Localization in One Dimension , 1981 .

[156]  Scott Kirkpatrick,et al.  Conductivity of the disordered linear chain , 1981 .

[157]  M. Deutsch Thermal conductance in screw-fastened joints at helium temperatures , 1979 .

[158]  W. Zimmermann,et al.  Screw-fastened joints for thermal contact at low temperatures. , 1977, The Review of scientific instruments.

[159]  G. G. Ihas,et al.  Metallic thermal connectors for use in nuclear refrigeration , 1977 .

[160]  B. Gomperts,et al.  Effect of flavone inhibitors of transport ATPases on histamine secretion from rat mast cells , 1977, Nature.

[161]  D. Mattis New wave‐operator identity applied to the study of persistent currents in 1D , 1974 .

[162]  R. Landauer Electrical resistance of disordered one-dimensional lattices , 1970 .

[163]  A. Anderson,et al.  Heat transfer below 0.2°K☆ , 1968 .

[164]  R. Boughton,et al.  Solderless Thermal Connector for Use at Low Temperatures , 1967 .

[165]  R. Berman,et al.  Thermal Contact at Low Temperatures , 1958, Nature.

[166]  C. Kittel Introduction to solid state physics , 1954 .

[167]  S. Ciraci,et al.  Quantum effects in electrical and thermal transport through nanowires , 2001 .

[168]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[169]  I. P. Batra,et al.  Origin of conductance quantization , 1998 .

[170]  M. Anantram,et al.  Observation and Modeling of Single Wall Carbon Nanotube Bend Junctions , 1998 .

[171]  J. Leburton,et al.  Optical spectroscopy of low dimensional semiconductors , 1997 .

[172]  L. B. Ebert Science of fullerenes and carbon nanotubes , 1996 .

[173]  M. Dresselhaus Carbon nanotubes , 1995 .

[174]  F. Pobell,et al.  Matter and Methods at Low Temperatures , 1992 .

[175]  F. Pobell,et al.  Thermal conductivity of normal and superconducting metals , 1990 .

[176]  R. Thomson Theory of Solids , 1962 .